scholarly journals Aggregate structure and stability linked to carbon dynamics in a south Chilean Andisol

2005 ◽  
Vol 2 (1) ◽  
pp. 203-238 ◽  
Author(s):  
D. Huygens ◽  
P. Boeckx ◽  
O. Van Cleemput ◽  
R Godoy ◽  
C. Oyarzún

Abstract. The extreme vulnerability of soil organic carbon to climate and land use change emphasizes the need for further research in different terrestrial ecosystems. We have studied the aggregate stability and carbon dynamics in a chronosequence of three different land uses in a south Chilean Andisols: a second growth Nothofagus obliqua forest (SGFOR), a grassland (GRASS) and a Pinus radiata plantation (PINUS). The aim of this study was to investigate the role of Al as soil organic matter stabilizing agent in this Andisol. In a case study, we linked differences in carbon dynamics between the three land use treatments to physical protection and recalcitrance of the soil organic matter (SOM). In this study, C aggregate stability and dynamics were studied using size and density fractionation experiments of the SOM, δ13C and total carbon analysis of the different SOM fractions, and mineralization measurements. The results showed that electrostatic attractions between and among Al-oxides and clay minerals are mainly responsible for the stabilization of soil aggregates and the physical protection of the enclosed soil organic carbon. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS. In contrast, incubation experiments of isolated macro organic matter fractions showed that the recalcitrance of the SOM decreased in another order: PINUS > SGFOR > GRASS. We concluded that physical protection of soil aggregates was the main process determining whole soil C mineralization. Land use changes affected soil organic carbon dynamics in this south Chilean Andisol by altering soil pH and consequently available Al.

2005 ◽  
Vol 2 (2) ◽  
pp. 159-174 ◽  
Author(s):  
D. Huygens ◽  
P. Boeckx ◽  
O. Van Cleemput ◽  
C. Oyarzún ◽  
R. Godoy

Abstract. Extreme sensitivity of soil organic carbon (SOC) to climate and land use change warrants further research in different terrestrial ecosystems. The aim of this study was to investigate the link between aggregate and SOC dynamics in a chronosequence of three different land uses of a south Chilean Andisol: a second growth Nothofagus obliqua forest (SGFOR), a grassland (GRASS) and a Pinus radiata plantation (PINUS). Total carbon content of the 0-10cm soil layer was higher for GRASS (6.7 kg C m-2) than for PINUS (4.3 kg C m-2, while TC content of SGFOR (5.8 kg C m-2) was not significantly different from either one. High extractable oxalate and pyrophosphate Al concentrations (varying from 20.3-24.4 g kg-1, and 3.9-11.1 g kg-1, respectively) were found in all sites. In this study, SOC and aggregate dynamics were studied using size and density fractionation experiments of the SOC, δ13C and total carbon analysis of the different SOC fractions, and C mineralization experiments. The results showed that electrostatic sorption between and among amorphous Al components and clay minerals is mainly responsible for the formation of metal-humus-clay complexes and the stabilization of soil aggregates. The process of ligand exchange between SOC and Al would be of minor importance resulting in the absence of aggregate hierarchy in this soil type. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS (respectively 0.495, 0.266 and 0.196 g CO2-Cm-2d-1 for the top soil layer). In contrast, incubation experiments of isolated macro organic matter fractions gave opposite results, showing that the recalcitrance of the SOC decreased in another order: PINUS>SGFOR>GRASS. We deduced that electrostatic sorption processes and physical protection of SOC in soil aggregates were the main processes determining SOC stabilization. As a result, high aggregate carbon concentrations, varying from 148 till 48 g kg-1, were encountered for all land use sites. Al availability and electrostatic charges are dependent on pH, resulting in an important influence of soil pH on aggregate stability. Recalcitrance of the SOC did not appear to largely affect SOC stabilization. Statistical correlations between extractable amorphous Al contents, aggregate stability and C mineralization rate constants were encountered, supporting this hypothesis. Land use changes affected SOC dynamics and aggregate stability by modifying soil pH (and thus electrostatic charges and available Al content), root SOC input and management practices (such as ploughing and accompanying drying of the soil).


2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 632 ◽  
Author(s):  
Kathryn Conrad ◽  
Ram C. Dalal ◽  
Ryosuke Fujinuma ◽  
Neal W. Menzies

Stabilisation and protection of soil organic carbon (SOC) in macroaggregates and microaggregates represents an important mechanism for the sequestration of SOC. Legume-based grass pastures have the potential to contribute to aggregate formation and stabilisation, thereby leading to SOC sequestration. However, there is limited research on the C and N dynamics of soil organic matter (SOM) fractions in deep-rooted legume leucaena (Leucaena leucocephala)–grass pastures. We assessed the potential of leucaena to sequester carbon (C) and nitrogen (N) in soil aggregates by estimating the origin, quantity and distribution in the soil profile. We utilised a chronosequence (0–40 years) of seasonally grazed leucaena stands (3–6 m rows), which were sampled to a depth of 0.3 m at 0.1-m intervals. The soil was wet-sieved for different aggregate sizes (large macroaggregates, >2000 µm; small macroaggregates, 250–2000 µm; microaggregates, 53–250 µm; and <53 µm), including occluded particulate organic matter (oPOM) within macroaggregates (>250 µm), and then analysed for organic C, N and δ13C and δ15N. Leucaena promoted aggregation, which increased with the age of the leucaena stands, and in particular the formation of large macroaggregates compared with grass in the upper 0.2 m. Macroaggregates contained a greater SOC stock than microaggregates, principally as a function of the soil mass distribution. The oPOM-C and -N concentrations were highest in macroaggregates at all depths. The acid nonhydrolysable C and N distribution (recalcitrant SOM) provided no clear distinction in stabilisation of SOM between pastures. Leucaena- and possibly other legume-based grass pastures have potential to sequester SOC through stabilisation and protection of oPOM within macroaggregates in soil.


2014 ◽  
Vol 4 ◽  
Author(s):  
Jose Navarro Pedreño ◽  
Ignacio Gómez Lucas ◽  
Jose Martín Soriano Disla

The mineralisation of organic matter (OM) when sewage sludge was used as amendment in 70 contrasting agricultural soils from Spain was analysed. Soils received a single dose of sewage sludge (equivalent to 50t dry weight ha<sup>-1</sup>) and the O<sub>2</sub> consumption was continuously monitored for 30 days using a multiple sensor respirometer in a laboratory experiment. The cumulative O<sub>2</sub> consumption and rates after 8 and 30 days of incubation (O<sub>2 cum</sub> 8d, 30d and O<sub>2 rate</sub> 8d, 30d), the respiratory quotient (RQ), the maximum O<sub>2</sub> rates over the incubation period (O<sub>2 max</sub>) and time from the beginning of the incubation when O<sub>2 max</sub> occurred (T<sub>max</sub>), were determined in both amended and non-amended soils. Sewage sludge application resulted in increased values for O<sub>2 max</sub>, O<sub>2 rate</sub> 8d, and O<sub>2 cum</sub> 30d. Differences were minor for T<sub>max</sub>, RQ 8d and O<sub>2 rate</sub> 30d. A considerable amount of the initial OM applied was mineralised during the first 8 days. Organic matter decomposition (as expressed by O<sub>2 cum</sub> 30d) was favoured in soils with high values of pH, carbonates, soil organic carbon and low values of amorphous Mn. Soils with these characteristics may potentially lose soil C after sewage sludge application.


2014 ◽  
Vol 120 (1-3) ◽  
pp. 37-49 ◽  
Author(s):  
Joshua W. Beniston ◽  
S. Tianna DuPont ◽  
Jerry D. Glover ◽  
Rattan Lal ◽  
Jennifer A. J. Dungait

2019 ◽  
pp. 1-107 ◽  
Author(s):  
Thangavel Ramesh ◽  
Nanthi S. Bolan ◽  
Mary Beth Kirkham ◽  
Hasintha Wijesekara ◽  
Manjaiah Kanchikerimath ◽  
...  

2020 ◽  
Vol 300 ◽  
pp. 106997
Author(s):  
Assefa Abegaz ◽  
Lulseged Tamene ◽  
Wuletawu Abera ◽  
Tesfaye Yaekob ◽  
Habtamu Hailu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document