scholarly journals Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

2006 ◽  
Vol 3 (5) ◽  
pp. 1391-1451 ◽  
Author(s):  
V. J. Coles ◽  
R. R. Hood

Abstract. The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997) anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2 fixation that are required to do so. We present results from an Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2 fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detritus compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr

2007 ◽  
Vol 4 (4) ◽  
pp. 455-479 ◽  
Author(s):  
V. J. Coles ◽  
R. R. Hood

Abstract. The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997; GS97) anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2-fixation that are required to do so. We present results from a new Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2-fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detrital iron compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr−1 from 25° S–65° N). In the model the surface nitrogen fixation rate patterns are not co-located with subsurface gradients in N*. Rather, the fixed nitrogen is advected away from its source prior to generating a subsurface N* anomaly. Changes in the phosphorus remineralization rate (relative to nitrogen) linearly determine the surface nitrogen fixation rate because they change the degree of phosphorus limitation, which is the dominant limitation in the Atlantic in the model. Phosphorus remineralization rate must be increased by about a factor of 2 (relative to nitrogen) in order to generate subsurface N* anomalies that are comparable to the observations. We conclude that N2-fixation rate estimates for the Atlantic (and globally) may need to be revised upward, which will help resolve imbalances in the global nitrogen budget suggested by Codispoti et al. (2001) and Codispoti (2007).


Author(s):  
Yuri Fedorov ◽  
Yuri Fedorov ◽  
Irina Dotsenko ◽  
Irina Dotsenko ◽  
Leonid Dmitrik ◽  
...  

The distribution and behavior of certain of trace elements in sea water is greatly affected by both physical, chemical and hydrometeorological conditions that are showed in the scientific works of prof. Yu.A. Fedorov with coauthors (1999-2015). Due to the shallow waters last factor is one of the dominant, during the different wind situation changes significantly the dynamics of water masses and interaction in the system “water – suspended matter – bottom sediments”.Therefore, the study of the behavior of the total iron in the water of the sea at different wind situation is relevant. The content of dissolved iron forms migration in The Sea of Azov water (open area) varies from 0.017 to 0.21 mg /dm3 (mean 0.053 mg /dm3) and in Taganrog Bay from 0.035 to 0.58 mg /dm3 (mean 0.11 mg /dm3) and it is not depending on weather conditions.The reduction in the overall iron concentration in the direction of the Taganrog Bay → The Sea of Azov (open area) is observed on average more than twice. The dissolved iron content exceeding TLV levels and their frequency of occurrence in the estuary, respectively, were higher compared with The Sea of Azov (open area).There is an increase in the overall iron concentration in the water of the Azov Sea on average 1.5 times during the storm conditions, due to the destruction of the structure of the upper layer and resuspension of bottom sediments, intensifying the transition of iron compounds in the solution.


2011 ◽  
Vol 8 (1) ◽  
pp. 217-225 ◽  
Author(s):  
A. Tovar-Sanchez ◽  
S. A. Sañudo-Wilhelmy

Abstract. Despite the ecological importance of Trichodesmium spp. for the global oceanic nitrogen budget, there is limited information on their trace metal composition in field samples. We report dissolved (<0.22 μm) metal concentrations measured in surface waters (Ag, Cd, Co, Cu, Fe, Mo, Ni, P, Pb and V) and in the total and the intracellular pool (Ag, Al, Cd, Co, Cu, Fe, Mn, Mo, Ni, P, Pb, V) of Trichodesmium populations collected in the western subtropical North Atlantic Ocean (April–May 2003) within the influence of the Amazon River plume. Dissolved element distributions were strongly influenced by the River discharge, with concentrations of some elements varying directly (i.e. Cd, Mo and V) or inversely (Ag, Co, Cu, Fe, Ni, P and Pb) with surface salinity. Intracellular metal values to phosphorous ratios (mol:mol) for Cd, Co, Cu, Fe, Mn, Mo, Ni and V ranged from 9.0 × 10−6 for Cd to 4.4 × 10−2 for Fe. Although total metal composition was significantly correlated with the intracellular content in the Trichodesmium colonies for some elements (e.g., Co, Cu, V), metal pools in the phytoplankton did not co-vary with the dissolved metal concentrations, suggesting that water column measurements may not be good predictors of the intracellular metal concentrations. The impact of physical parameters and bioactive elements on biological processes such as nitrogen fixation, carbon drawdown and biomass production in Trichodesmium colonies was explored by using a principal component analysis test (PCA). The analysis indicated that the biological drawdown of dissolved inorganic carbon (DIC) by Trichodesmium seems to be influenced by the internal content of Fe, Co, Cd, and Cu, while nitrogen fixation seems more influenced by mixed layer depth and dissolved Fe and Ni concentrations.


2020 ◽  
Author(s):  
Rosmeri Porfírio da Rocha ◽  
Michelle Simões Reboita ◽  
Natália Machado Crespo ◽  
Eduardo Marcos de Jesus ◽  
Andressa Andrade Cardoso ◽  
...  

&lt;p&gt;Cyclones developing in eastern coast of South America impact weather and control the climate in most parts of the continent as well as over the South Atlantic Ocean. Current knowledge of these cyclones shows that they can have different thermal and dynamic structures along their lifecycles being classified as tropical, subtropical or extratropical. Cyclones occurring over the sea generate intense near-surface winds with major impacts on human activities and ecosystems. Given this context, we are producing fine resolution (~25 km) dynamic downscaling with RegCM4 to investigate the climatic trends of the different phases of cyclones over the southwest South Atlantic Ocean. Special emphasis will be given on the contribution of subtropical cyclones causing extreme events (rainfall and wind) in eastern Brazil. The simulations cover South America and wider area of South Atlantic Ocean. For evaluation simulation RegCM4 is forced by ERA-Interim reanalysis, while for the projections by CMIP5 models under RCP4.5 and RCP8.5 scenarios. Cyclones are tracked using an algorithm based on cyclonic relative vorticity. In this study we present the climatology of all cyclones provided by the ERA-Interim evaluation simulation in the period 1979-2015. Basically, we discuss the ability of fine resolution simulation in reproducing the main cyclogenetic areas over the continent, seasonality and interannual variability of cyclones. Comparisons with previous simulations allow discussing the impact of fine resolution downscaling on the climatological features of all cyclones and their classification in South America domain. &amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;


2020 ◽  
Vol 8 (3) ◽  
pp. 333 ◽  
Author(s):  
Alsayed Mostafa ◽  
Seongwon Im ◽  
Young-Chae Song ◽  
Seoktae Kang ◽  
Dong-Hoon Kim

This study investigated the impact of stimulating direct interspecies electron transfer (DIET), by supplementing nano-sized magnetite (nFe3O4, 0.5 g Fe/g VSS) and carbon nanotubes (CNT, 1 g/L), in anaerobic digestion of oleic acid (OA) at various concentrations (0.10–4.00 g chemical oxygen demand(COD)/L). Both supplementations could enhance CH4 production, and its beneficial impact increased with increased OA concentration. The biggest improvements of 114% and 165% compared to the control were achieved by nFe3O4 and CNT, respectively, at OA of 4 g COD/L. The enhancement can be attributed to the increased sludge conductivity: 7.1 ± 0.5 (control), 12.5 ± 0.8 (nFe3O4-added), and 15.7 ± 1.1 µS/cm (CNT-supplemented). Dissolved iron concentration, released from nFe3O4, seemed to have a negligible role in improving CH4 production. The excretion of electron shuttles, i.e., humic-like substances and protein-like substances, were found to be stimulated by supplementing nFe3O4 and CNT. Microbial diversity was found to be simplified under DIET-stimulating conditions, whereby five genera accounted for 88% of the total sequences in the control, while more than 82% were represented by only two genera (Methanotrix concilli and Methanosarcina flavescens) by supplementing nFe3O4 and CNT. In addition, the abudance of electro-active bacteria such as Syntrophomonas zehnderi was significantly increased from 17% to around 45%.


Author(s):  
Yuri Fedorov ◽  
Yuri Fedorov ◽  
Irina Dotsenko ◽  
Irina Dotsenko ◽  
Leonid Dmitrik ◽  
...  

The distribution and behavior of certain of trace elements in sea water is greatly affected by both physical, chemical and hydrometeorological conditions that are showed in the scientific works of prof. Yu.A. Fedorov with coauthors (1999-2015). Due to the shallow waters last factor is one of the dominant, during the different wind situation changes significantly the dynamics of water masses and interaction in the system “water – suspended matter – bottom sediments”.Therefore, the study of the behavior of the total iron in the water of the sea at different wind situation is relevant. The content of dissolved iron forms migration in The Sea of Azov water (open area) varies from 0.017 to 0.21 mg /dm3 (mean 0.053 mg /dm3) and in Taganrog Bay from 0.035 to 0.58 mg /dm3 (mean 0.11 mg /dm3) and it is not depending on weather conditions.The reduction in the overall iron concentration in the direction of the Taganrog Bay → The Sea of Azov (open area) is observed on average more than twice. The dissolved iron content exceeding TLV levels and their frequency of occurrence in the estuary, respectively, were higher compared with The Sea of Azov (open area).There is an increase in the overall iron concentration in the water of the Azov Sea on average 1.5 times during the storm conditions, due to the destruction of the structure of the upper layer and resuspension of bottom sediments, intensifying the transition of iron compounds in the solution.


2010 ◽  
Vol 7 (4) ◽  
pp. 6523-6543 ◽  
Author(s):  
A. Tovar-Sanchez ◽  
S. A. Sañudo-Wilhelmy

Abstract. Despite the ecological importance of Trichodesmium spp. for the global oceanic nitrogen budget, there is limited information on their trace metal composition in field samples. We report dissolved (<0.22 μm) metal concentrations measured in surface waters (Ag, Cd, Co, Cu, Fe, Mo, Ni, P, Pb and V) and in the total and the intracellular pool (Ag, Al, Cd, Co, Cu, Fe, Mn, Mo, Ni, P, Pb, V) of Trichodesmium populations collected in the western subtropical North Atlantic Ocean (April–May 2003) within the influence of the Amazon River plume. Dissolved element distributions were strongly influenced by the River discharge, with concentrations of some elements varying directly (i.e. Cd, Mo and V) or inversely (Ag, Co, Cu, Fe, Ni, P and Pb) with surface salinity. Intracellular metal values to phosphorous ratios (mol:mol) for Cd, Co, Cu, Fe, Mn, Mo, Ni and V ranged from 9.0×10−6 for Cd to 4.4×10−2 for Fe. Although total metal composition was significantly correlated with the intracellular content in the Trichodesmium colonies for some elements (e.g., Co, Cu, V), metal pools in the phytoplankton did not co-vary with the dissolved metal concentrations, suggesting that water column measurements may not be good predictors of the intracellular metal concentrations. The impact of physical parameters and bioactive elements on biological processes in Trichodesmium such as nitrogen fixation, carbon drawdown and biomass production was explored by using a principal component analysis test (PCA). The analysis indicates that the biological drawdown of dissolved inorganic carbon (DIC) by Trichodesmium seems to be influenced by the internal content of Fe, Co, Cd, Cu and Mn, while nitrogen fixation seems more influenced by the internal concentration of Mo, Ni and V and by the dissolved phosphorous concentrations.


Author(s):  
Talbot C. Imlay

This chapter examines the post-war efforts of European socialists to reconstitute the Socialist International. Initial efforts to cooperate culminated in an international socialist conference in Berne in February 1919 at which socialists from the two wartime camps met for the first time. In the end, however, it would take four years to reconstitute the International with the creation of the Labour and Socialist International (LSI) in 1923. That it took so long to do so is a testimony to the impact of the Great War and to the Bolshevik revolution. Together, these two seismic events compelled socialists to reconsider the meaning and purpose of socialism. The search for answers sparked prolonged debates between and within the major parties, profoundly reconfiguring the pre-war world of European socialism. One prominent stake in this lengthy process, moreover, was the nature of socialist internationalism—both its content and its functioning.


2021 ◽  
Vol 22 (11) ◽  
pp. 5628
Author(s):  
Valquíria Campos Alencar ◽  
Juliana de Fátima dos Santos Silva ◽  
Renata Ozelami Vilas Boas ◽  
Vinícius Manganaro Farnézio ◽  
Yara N. L. F. de Maria ◽  
...  

Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N2 fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N2 fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.


Sign in / Sign up

Export Citation Format

Share Document