scholarly journals Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves

2009 ◽  
Vol 6 (3) ◽  
pp. 4963-4991 ◽  
Author(s):  
M. Chierici ◽  
A. Fransson

Abstract. In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT) underway aboard IB Oden along the Northwest Passage from Cape Farwell (South Greenland) to the Chukchi Sea. We investigated variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (DIC), [CO32−] and saturation of aragonite (ΩAr) and calcite (ΩCa) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (ΩAr<1). In these areas, surface water was low in AT and DIC (<1500 μmol kg−1) relative to seawater and showed low [CO32−]. The low saturation states were probably due to the effect of dilution due from freshwater addition by sea ice melt (CAA) and river runoff (MS). High AT and DIC and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to physical upwelling of subsurface water with elevated CO2. Highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower DIC from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and DIC from enhanced organic matter remineralization, resulting in the lowest ΩAr (~1.2) of the area.

2009 ◽  
Vol 6 (11) ◽  
pp. 2421-2431 ◽  
Author(s):  
M. Chierici ◽  
A. Fransson

Abstract. In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT) underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland) to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (CT), [CO32−] and the saturation of aragonite (ΩAr) and calcite (ΩCa) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (ΩAr<1). In these areas, surface water was low in AT and CT (<1500 μmol kg−1) relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA) and river runoff (MS). High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and CT from enhanced organic matter remineralization, resulting in the lowest ΩAr (~1.2) of the area.


Ocean Science ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. 29-49
Author(s):  
Jaclyn Clement Kinney ◽  
Karen M. Assmann ◽  
Wieslaw Maslowski ◽  
Göran Björk ◽  
Martin Jakobsson ◽  
...  

Abstract. Substantial amounts of nutrients and carbon enter the Arctic Ocean from the Pacific Ocean through the Bering Strait, distributed over three main pathways. Water with low salinities and nutrient concentrations takes an eastern route along the Alaskan coast, as Alaskan Coastal Water. A central pathway exhibits intermediate salinity and nutrient concentrations, while the most nutrient-rich water enters the Bering Strait on its western side. Towards the Arctic Ocean, the flow of these water masses is subject to strong topographic steering within the Chukchi Sea with volume transport modulated by the wind field. In this contribution, we use data from several sections crossing Herald Canyon collected in 2008 and 2014 together with numerical modelling to investigate the circulation and transport in the western part of the Chukchi Sea. We find that a substantial fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. This water then contributes to the high-nutrient waters of Herald Canyon. The bottom of the canyon has the highest nutrient concentrations, likely as a result of addition from the degradation of organic matter at the sediment surface in the East Siberian Sea. The flux of nutrients (nitrate, phosphate, and silicate) and dissolved inorganic carbon in Bering Summer Water and Winter Water is computed by combining hydrographic and nutrient observations with geostrophic transport referenced to lowered acoustic Doppler current profiler (LADCP) and surface drift data. Even if there are some general similarities between the years, there are differences in both the temperature–salinity and nutrient characteristics. To assess these differences, and also to get a wider temporal and spatial view, numerical modelling results are applied. According to model results, high-frequency variability dominates the flow in Herald Canyon. This leads us to conclude that this region needs to be monitored over a longer time frame to deduce the temporal variability and potential trends.


2021 ◽  
Author(s):  
Jaclyn Clement Kinney ◽  
Karen M. Assmann ◽  
Wieslaw Maslowski ◽  
Göran Björk ◽  
Martin Jakobsson ◽  
...  

Abstract. Substantial amounts of nutrients and carbon enter the Arctic Ocean from the Pacific Ocean through Bering Strait, distributed over three main pathways. Water with low salinities and nutrient concentrations takes an eastern route along the Alaskan coast, as Alaskan Coastal Water. A central pathway exhibits intermediate salinity and nutrient concentrations, while the most nutrient-rich water enters Bering Strait on its western side. Towards the Arctic Ocean the flow of these water masses is subject to strong topographic steering within the Chukchi Sea with volume transports modulated by the wind field. In this contribution we use data from several sections crossing Herald Canyon collected in 2008 and 2014 together with numerical modeling to investigate the circulation and transport in the western part of the Chukchi Sea. We find that a substantial fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. This water then contributes to the high nutrient waters of Herald Canyon. The bottom of the canyon has the highest nutrient concentrations, likely as a result of addition from the degradation of organic matter at the sediment surface in the East Siberian Sea. The flux of nutrients (nitrate, phosphate, and silicate) and dissolved inorganic carbon in Bering Summer Water and Winter Water is computed by combining hydrographic and nutrient observations with geostrophic transports referenced to LADCP and surface drift data. Even if there are some general similarities between the years, there are differences in both the temperature-salinity and nutrient characteristics. To assess these differences, and also to get a wider temporal and spatial view, numerical modeling results are applied. According to model results, high frequency variability dominates the flow in Herald Canyon. This leads us to conclude that this region needs to be monitored over a longer time frame to deduce the temporal variability and potential trends.


2017 ◽  
Author(s):  
Jacoba Mol ◽  
Helmuth Thomas ◽  
Paul G. Myers ◽  
Xianmin Hu ◽  
Alfonso Mucci

Abstract. The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries inorganic carbon and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world oceans. Upwelling carries dissolved inorganic carbon (DIC) and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of inorganic carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of inorganic carbon are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf is analyzed and the resulting influence on the carbonate system, including the saturation state of waters with respect to aragonite and pH, is investigated. TA and the oxygen isotope ratio of water (δ18O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will respond to the aforementioned climate-induced changes.


2020 ◽  
Author(s):  
Maria Luneva ◽  
Yevgeny Aksenov ◽  
Vladimir Ivanov ◽  
Stephen Kelly ◽  
Fedor Tuzov

&lt;p&gt;We explore dense water cascading (DWC; a type of bottom-trapped gravity current) on multi-decadal time scales using a pan-Arctic regional ocean-ice model. DWC is particularly important in the Arctic Ocean as the main mechanism of ventilation of interior waters when open ocean convection is blocked by strong density stratification. We identify the locations where the most intense DWC events occur and evaluate the associated cross-shelf mass, heat and salt fluxes.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;A detailed analysis of specific cascading sites around the Beaufort Gyre and adjacent regions is performed. We find that autumn upwelling of warm and saltier Atlantic waters on the shelf and subsequent cooling and mixing of uplifted waters trigger the cascading on the West Chukchi Sea shelf break. We also perform Lagragian particle tacking of low salinity Pacific waters originating at the surface in the Bering Strait; these waters are shown to be modified by brine rejection and cooling, and through subsequent mixing become dense enough to reach depths of 160-200m and below. We examine the role of cascading and shelf upwelling on the shelf waters transformation, pathways and spread of the biological important tracers (O18, Si., DIC snd DIN).&lt;/p&gt;


1994 ◽  
Vol 13 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Toshiaki Irizuki

Abstract. Seventy-eight ostracod species belonging to 38 genera are recognized from the late Miocene Fujikotogawa Formation (c. 7–8 Ma), 40 km NE of Akita City, northern Japan. Some 30–40% of the ostracod species belong to the cold water groups (circumpolar and cryophilic species) reported from Plio-Pleistocene formations yielding the Omma-Manganji Fauna, the name given by Otuka (1939) to the Pliocene Japanese cold water molluscan fauna. This study demonstrates that most ostracod species distinguished in deposits yielding the Omma-Manganji Fauna had already appeared in the late Miocene. At least 13 of the ostracod species have been reported from both the Arctic and northern Atlantic Oceans, implying migration from the Pacific to the northern Atlantic through the Arctic after the Bering Strait had been breached. The 13 circumpolar, nine cryophilic and four endemic cold water species are illustrated, with brief taxonomic notes.


1952 ◽  
Vol 17 (3) ◽  
pp. 261-262 ◽  
Author(s):  
Lawrence Krader

In the summer of 1947, Levoshin (1950) found a group of objects on a terrace of the Yakitikiveem River in the central part of the Chukchi (Chukotski) Peninsula (approximately 66° N., 175° W.), which forms the Asiatic shore of Bering Strait. These objects are as interesting for their typology as for their geographic location. The announcement of the find had been foreshadowed by Beregovaya (1948), where reference was made to an oral report by Okladnikov. In this report, Okladnikov had referred to a Neolithic station in the valley of the Amguema River in the Chukchi Peninsula. Shimkin (1949), in a recent review of Soviet anthropology, has made note of the discussion to that point. Now, the brief communication by Levoshin, and a further comment by Okladnikov (1950) himself help to bring the information on these finds up to date. It is almost certain that the Amguema Valley reference is the same as the Yakitikiveem River site reference. Yet, while existing maps show the Amguema River as emptying into the Arctic Ocean in the Chukchi Peninsula, the Yakitikiveem River is not reported on any known map or chart.


2017 ◽  
Author(s):  
Masanobu Yamamoto ◽  
Seung-Il Nam ◽  
Leonid Polyak ◽  
Daisuke Kobayashi ◽  
Kenta Suzuki ◽  
...  

Abstract. The Beaufort Gyre (BG) and the Bering Strait inflow (BSI) are important elements of the Arctic Ocean circulation system and major controls on the distribution of Arctic sea ice. We report records of the quartz/feldspar and chlorite/illite ratios in three sediment cores from the northern Chukchi Sea providing insights into the long-term dynamics of the BG circulation and the BSI during the Holocene. The quartz/feldspar ratio, a proxy of the BG strength, gradually decreased during the Holocene, suggesting a long-term decline in the BG strength, consistent with orbitally-controlled decrease in summer insolation. We suppose that the BG rotation weakened as a result of increasing stability of sea-ice cover at the margins of the Canada Basin, driven by decreasing insolation. Millennial to multi-centennial variability in the quartz/feldspar ratio (the BG circulation) is consistent with fluctuations in solar irradiance, suggesting that solar activity affected the BG strength on these timescales. The BSI approximated by the chlorite/illite record shows intensified flow from the Bering Sea to the Arctic during the middle Holocene, which is attributed primarily to the effect of an overall weaker Aleutian Low. The middle Holocene intensification of the BSI was associated with decrease in sea ice concentrations and increase in marine production, as indicated by biomarker concentrations, suggesting an influence of the BSI on sea ice distribution and biological production in the Chukchi Sea.


2020 ◽  
Author(s):  
Chantal Mears ◽  
Helmuth Thomas ◽  
Paul B. Henderson ◽  
Matthew A. Charette ◽  
Hugh MacIntyre ◽  
...  

Abstract. As a shelf dominated basin, the Arctic Ocean and its biogeochemistry are heavily influenced by continental and riverine sources. Radium isotopes (226Ra, 228Ra, 224Ra, 223Ra), are transferred from the sediments to seawater, making them ideal tracers of sediment-water exchange processes and ocean mixing. 226Ra and 228Ra are the two longer-lived isotopes of the Radium Quartet (226Ra, t1/2 = 1600 y and 228Ra, t1/2 = 5.8 y). Because of their long half-lives they can provide insight into the water mass compositions, distribution patterns, as well as mixing processes and the associated timescales throughout the Canadian Arctic Archipelago (CAA). The wide range of 226Ra, 228Ra, and of the 228Ra / 226Ra ratio, measured in water samples collected during the 2015 GEOTRACES cruise, complemented by additional chemical tracers (dissolved inorganic carbon (DIC), total alkalinity (AT), barium (Ba), and the stable oxygen isotope composition of water (δ18O)) highlight the dominant biogeochemical, hydrographic and bathymetric features of the CAA. Bathymetric features, such as the continental shelf and shallow coastal sills, are critical in modulating circulation patterns within the CAA, including the bulk flow of Pacific waters and the inhibited eastward flow of denser Atlantic waters through the CAA. Using a Principal Component Analysis, we unravel the dominant mechanisms and the apparent water mass end-members that shape the tracer distributions. We identify two distinct water masses located above and below the upper halocline layer throughout the CAA, as well as distinctly differentiate surface waters in the eastern and western CAA. Furthermore, we identify water exchange across 80° W, inferring a draw of Atlantic water, originating from Baffin Bay, into the CAA. In other words, this implies the presence of an Atlantic water U-turn located at Barrow Strait, where the same water mass is seen along the northernmost edge at 80° W as well as along south-easternmost confines of Lancaster Sound. Overall, this study provides a stepping stone for future research initiatives within the Canadian Arctic Archipelago, revealing how quantifying disparities in radioactive isotopes can provide valuable information on the potential effects of climate change within vulnerable areas such as the CAA.


2013 ◽  
Vol 10 (6) ◽  
pp. 10143-10188 ◽  
Author(s):  
Y. Umezawa ◽  
A. Yamaguchi ◽  
J. Ishizaka ◽  
T. Hasegawa ◽  
C. Yoshimizu ◽  
...  

Abstract. The northern East China Sea (ECS) serves as a spawning and nursery ground for many species of fish and squid. To clarify the basis of the food web in the northern ECS, we examined the nitrate (NO3) dynamics along four latitudinal transects based on stable nitrogen and oxygen isotopes of NO3 (δ15NNO3 and δ18ONO3) and temperature-salinity dynamics in both winter (February 2009) and summer (July 2009 and July 2011). The δ15NNO3 and δ18ONO3, which were distinctly different among the potential NO3 sources, were useful for clarifying NO3 sources and its actual usage by phytoplankton. In winter, Kuroshio Subsurface Water (KSSW) and the Yellow Sea Mixed Water (YSMW) predominantly contributed to NO3 distributed in the shelf water. In the surface water of the Okinawa Trough, NO3 from the KSSW, along with a temperature increase caused by an intrusion of Kuroshio Surface Water (KSW), seemed to stimulate phytoplankton growth. In summer, Changjiang Diluted Water (CDW), Yellow Sea Cold Water Mass (YSCWM), and KSSW affected the distribution and abundance of NO3 in the northern ECS, depending on precipitation in the Changjiang drainage basin and the development of the YSCWM in the shelf bottom water. Isotopic fractionation during NO3 uptake by phytoplankton seemed to drastically change δ15NNO3 and δ18ONO3, which may indirectly indicate the amount of primary production. And δ15NNO3-ln([NO3]) dynamics and relatively lighter δ15NNO3 suggested that atmospheric nitrogen and nitrification may have contributed to NO3 dynamics, too, in surface and subsurface layers, respectively, during summer, suggesting a tightly coupled nitrogen cycle in the shelf water of the northern ECS.


Sign in / Sign up

Export Citation Format

Share Document