scholarly journals Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling

2012 ◽  
Vol 9 (3) ◽  
pp. 3173-3232 ◽  
Author(s):  
D. S. Goll ◽  
V. Brovkin ◽  
B. R. Parida ◽  
C. H. Reick ◽  
J. Kattge ◽  
...  

Abstract. Terrestrial carbon (C) cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP) due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N) and phosphorus (P), nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH, which already includes representations of coupled C and N cycles. The model reveals a distinct geographic pattern of P and N limitation. Under the SRES A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes) and 16% (particularly at low latitudes) lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. However, the quantification of P limitation remains challenging as the poorly constrained processes of soil P sorption and biochemical mineralization strongly influence the strength of P limitation. After 2100, increased temperatures (+5 K) and high CO2 (700 ppm) concentrations cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitation. These findings indicate that global land C uptake in the 21st century is likely overestimated in models that neglect P and N limitation. In the long-term, insufficient P availability might become an important constraint on C cycling at high latitudes. Accordingly, we argue that the P cycle must be included in global models used for C cycle projections.

2012 ◽  
Vol 9 (9) ◽  
pp. 3547-3569 ◽  
Author(s):  
D. S. Goll ◽  
V. Brovkin ◽  
B. R. Parida ◽  
C. H. Reick ◽  
J. Kattge ◽  
...  

Abstract. Terrestrial carbon (C) cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP) due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N) and phosphorus (P), nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg), which already includes representations of coupled C and N cycles. The model reveals a distinct geographic pattern of P and N limitation. Under the SRES (Special Report on Emissions Scenarios) A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes) and 16% (particularly at low latitudes) lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. Nutrient limitation in general may be biased by the model simplicity, but the ranking of limitations is robust against the parameterization and the inflexibility of stoichiometry. After 2100, increased temperature and high CO2 concentration cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitations. The quantification of P limitation remains challenging. The poorly constrained processes of soil P sorption and biochemical mineralization are identified as the main uncertainties in the strength of P limitation. Even so, our findings indicate that global land C uptake in the 21st century is likely overestimated in models that neglect P and N limitations. In the long term, insufficient P availability might become an important constraint on C cycling at high latitudes. Accordingly, we argue that the P cycle must be included in global models used for C cycle projections.


Author(s):  
Vanessa Minden ◽  
Jörg Schaller ◽  
Harry Olde Venterink

Abstract Aims Silicon (Si) has been shown to beneficially affect plant performance under stressful environmental conditions, such as water or nutrient deficiency. Here we tested the effects of two important plant nutrients, nitrogen (N) and phosphorus (P), on Si content in different plant organs in the grass species Holcus lanatus. Methods We studied trait responses to N limitation, balanced nutrient availability and P limitation. Single plant individuals were grown in sand-filled pots in a greenhouse for 2 months. Nitrogen, phosphorus, carbon and silicon contents were determined in leaves, stems and roots, as were leaf and roots traits, biomass production and root enzyme activity. Results Si content was lowest under balanced nutrient supply in all plant organs. Under P limitation Si content was highest in leaves and stems, in roots it was highest under N limitation. Si:C ratios were lowest under balanced conditions, and highest under nutrient limitation. Root phosphatase activity was highest under P limitation and chlorophyll content was lowest under N limitation. Conclusions Our model species assimilated less ‘high cost C’ and took up more ‘low cost Si’ under nutrient limitation, especially under P deficiency. Si potentially plays an important role in different environments, such as nutrient or light limitation, which in turn may be related to different plant strategies, for example higher stem rigidity in high Si plants versus higher stem flexibility in low Si plants. More research is needed to further elucidate the role of silicon in different concepts of trait-environment relationships.


2015 ◽  
Vol 12 (23) ◽  
pp. 6955-6984 ◽  
Author(s):  
C. Laufkötter ◽  
M. Vogt ◽  
N. Gruber ◽  
M. Aita-Noguchi ◽  
O. Aumont ◽  
...  

Abstract. Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.


2015 ◽  
Vol 12 (4) ◽  
pp. 3731-3824 ◽  
Author(s):  
C. Laufkötter ◽  
M. Vogt ◽  
N. Gruber ◽  
M. Aita-Noguchi ◽  
O. Aumont ◽  
...  

Abstract. Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean and mostly ignored the large inter-model differences. Here, we analyze model simulated changes of NPP for the 21st century under IPCC's high emission scenario RCP8.5 using a suite of nine coupled carbon–climate Earth System Models with embedded marine ecosystem models with a focus on the spread between the different models and the underlying reasons. Globally, five out of the nine models show a decrease in NPP over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40%. In this region, the inter-quartile range of the differences between the 2012–2031 average and the 2081–2100 average is up to 3 mol C m-2 yr-1. These large differences in future change mirror large differences in present day NPP. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification and reduced upwelling. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduces NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while the remaining model simulates changes of less than 0.5%. While there is more consistency in the modeled increase in NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 221 ◽  
Author(s):  
Karen Brandenburg ◽  
Laura Siebers ◽  
Joost Keuskamp ◽  
Thomas G. Jephcott ◽  
Dedmer B. Van de Waal

Eutrophication has played a major role in the worldwide increase of harmful algal blooms (HABs). Higher input of key nutrients, such as nitrogen (N) and phosphorus (P), can stimulate the growth of harmful algal species in freshwater, estuarine, and coastal marine ecosystems. Some HAB-forming taxa, particularly several cyanobacteria and dinoflagellate species, are harmful through the production of N-rich toxins that have detrimental effects on the environment and human health. Here, we test how changes in nutrient availability affect N-rich toxin synthesis in cyanobacteria and dinoflagellates using a meta-analysis approach. Overall, N-rich toxin content showed an increase with P limitation, while it tended to decrease with N limitation, but we also observed substantial variation in responses both within and across genera and toxin groups. For instance, in response to N limitation, microcystin content varied from a 297% decrease up to a 273% increase, and paralytic shellfish poisoning (PSP) toxin content varied from a 204% decrease to an 82% increase. Cylindrospermopsin, produced by N2-fixing cyanobacteria, showed no clear direction in response to nutrient limitation, and cellular contents of this compound may thus vary independently of nutrient fluctuations. Our results confirm earlier reported stoichiometric regulation of N-rich phytoplankton toxins, showing increased toxin content with an increase in cellular N:P ratios, and vice versa. Thus, changes in N-rich toxin content largely follow the changes in relative cellular N content. Consequently, although nutrient limitation may limit bloom biomass and thereby bloom toxicity, our results warn that P limitation can cause accumulation of cellular toxins and thus lead to unexpected increases in bloom toxicity.


Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 47
Author(s):  
Malcolm A. Barnard ◽  
Justin D. Chaffin ◽  
Haley E. Plaas ◽  
Gregory L. Boyer ◽  
Bofan Wei ◽  
...  

Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.


2009 ◽  
Vol 66 (9) ◽  
pp. 1435-1448 ◽  
Author(s):  
Courtney R. Salm ◽  
Jasmine E. Saros ◽  
Sherilyn C. Fritz ◽  
Christopher L. Osburn ◽  
David M. Reineke

We investigated patterns of primary production across prairie saline lakes in the central and northern Great Plains of the United States. Based on comparative lake sampling in 2004, seasonal predictors of algal primary productivity were identified within subsets of similar lakes using a combination of Akaike’s information criterion (AIC) and classification and regression trees (CART). These models indicated complex patterns of nutrient limitation by nitrogen (N), phosphorus (P), and iron (Fe) within different lake groups. Nutrient enrichment assays (control, + Fe, + N, + P, + N + P) were performed in spring and summer of 2006 to determine if phytoplankton in selected lakes followed predicted patterns of nutrient limitation. Both the comparative lake sampling and experimental results indicated that N limitation was widespread in these prairie lakes, with evidence for secondary P limitation in certain lakes. In the experiments, iron did not stimulate primary production. Our results suggest that given the diverse geochemical nature of these lakes, classification models that separate saline lakes into subsets may be an effective method for improving predictions of algal production.


2021 ◽  
Author(s):  
Agathe Toumoulin ◽  
Yannick Donnadieu ◽  
Delphine Tardif ◽  
Jean-Baptiste Ladant ◽  
Alexis Licht ◽  
...  

<p>At the junction of warmhouse and coolhouse climate phases, the Eocene Oligocene Transition (EOT) is a key moment in the history of the Cenozoic climate. Yet, while it is accompanied by severe extinctions and biodiversity turnovers, terrestrial climate evolution remains poorly resolved. On lands, some fossil and geochemistry records suggest a particularly marked cooling in winter, which would have led to the development of more pronounced seasons (higher Mean Annual Range of Temperatures, MATR) in certain regions of the Northern Hemisphere. This type of climate change should have had consequences on biodiversity and an implication in some of the fauna and flora renewals described at the EOT. However, this season strengthening has been studied only superficially by model studies, and questions remain about the geographical extent of this phenomenon and the associated climatic processes. Although other components of the climate system vary seasonally (e.g., precipitation, wind), we therefore focus on the seasonality of temperatures only.</p><p>In order to better understand and describe temperature seasonality change patterns from the middle Eocene to the early Oligocene, we use the Earth System Model IPSL-CM5A2 and a set of simulations reconstructing the EOT through three major climate forcings: pCO2 decrease (1120/840 to 560 ppm), the Antarctic ice-sheet (AIS) formation, and the associated sea-level decrease (-70 m). </p><p>Our results suggest that seasonality changes across the EOT rely on the combined effects of the different tested mechanisms which result in zonal to regional climate responses. Sea-level changes associated with the earliest stage of the AIS formation may have also contributed to middle to late Eocene MATR reinforcement. We reconstruct strong and heterogeneous patterns of seasonality changes across the EOT. Broad continental areas of increased MATR reflect a strengthening of seasonality (from 4°C to > 10°C increase of the MATR) in agreement with MATR and Coldest Month Mean Temperatures (CMMT) changes indicated by a review of existing proxies. pCO2 decrease induces a zonal pattern with alternating increasing and decreasing seasonality bands. In the northern high-latitudes, it results in sea-ice and surface albedo feedback, driving a strong increase in seasonality (up to 8°C MATR increase). Conversely, the onset of the AIS is responsible for a more constant surface albedo, which leads to a strong decrease in seasonality in the southern mid- to high-latitudes (> 40°S). Finally, continental areas emerged due to the sea level lowering cause the largest increase in seasonality and explain most of the global heterogeneity in MATR changes patterns. The seasonality change patterns we reconstruct are consistent with the variability of the EOT biotic crisis intensity across the Northern Hemisphere.</p>


2020 ◽  
Author(s):  
Svenja Stock ◽  
Moritz Köster ◽  
Jens Boy ◽  
Roberto Godoy ◽  
Francisco Nájera ◽  
...  

<p>Arbuscular mycorrhizal fungi (AMF) are important partners in plant nutrition, as they increase the range to scavenge for nutrients and can access resources otherwise occlude for plants. Under water shortage, when mobility of nutrients in soil is limited, AMF are especially important to acquire resources and can modulate plant drought resistance. Strategies of plants to cope with water and nutrient restrictions are shaped by the intensity of aridity. To investigate the effect of aridity on plant-AMF associations regarding drought resistance and plant nutrient acquisition, a <sup>13</sup>CO<sub>2</sub> pulse labeling was conducted across an aridity gradient. In a semiarid shrubland (66 mm a<sup>-1</sup>), a Mediterranean woodland (367 mm a<sup>-1</sup>), and a humid temperate forest (1500 mm a<sup>-1</sup>), root and soil samples were taken from 0-10 cm and 20-30 cm soil depth before labeling and at 1 day, 3 days, and 14 days after labeling. Carbon (C), nitrogen (N), and phosphorus (P) stocks as well as AMF root colonization, extraradical AMF biomass (phospho- and neutral lipid fatty acids (PLFA and NLFA) 16:1w5c), specific root length (SRL), and root tissue density (RTD) were measured. Plant C investment into AMF and roots was determined by the <sup>13</sup>C incorporation in 16:1w5c (PLFA and NLFA) and root tissue, respectively. Soil C:N:P stoichiometry indicated a N and P limitation under humid conditions and a P limitation in the topsoil under Mediterranean conditions. N stocks were highest in the Mediterranean woodland. A strong correlation of the AMF storage compound NLFA 16:1w5c to C:P ratio under semiarid conditions pointed to a P limitation of AMF, likely resulting from low P mobility in dry and alkaline soils. With increasing aridity, the AMF abundance in root (and soil) decreased from 45% to 20% root area. <sup>13</sup>C incorporation in PLFA 16:1w5c was similar across sites, while relative AMF abundance in topsoil (PLFA 16:1w5c:SOC) was slightly higher under semiarid and humid than under Mediterranean conditions, pointing to the importance of AMF for plant nutrition under nutrient limitation. Additionally, PLFA 16:1w5c contents in soil were higher with lower P availability in each site, underlining the role of AMF to supply P for plants under P deficiency. Under humid conditions (with strong N and P limitation) and semiarid conditions (with strong water limitation), root AMF colonization increased with lower N availability, displaying the role of AMF for plant N nutrition under nutrient and/or water shortage. Under humid and Mediterranean conditions, SRL decreased (0.5 and 0.3 times, respectively) and RTD increased (1.9 and 1.7 times, respectively) with depth, indicating a drought tolerance strategy of plants to sustain water shortage. Under semiarid conditions, SRL increased with depth (2.3 times), while RTD was consistently high, suggesting an increasing proportion of long-living fine roots with depth as scavenging agents for water. These relations point to a drought avoidance strategy of plants as adaptation to long-term water limitation. Under strong nutrient limitation, as under humid and semiarid conditions, AMF are crucial to sustain plant nutrition and to enhance plant resistance to water shortage.</p>


2020 ◽  
Author(s):  
Chris R Taylor ◽  
Ben Keane ◽  
Iain Hartley ◽  
Gareth Phoenix

<p>Terrestrial ecosystems absorb 30% of anthropogenic carbon dioxide (CO<sub>2</sub>) emissions, slowing its rising atmospheric concentration and substantially inhibiting climate change. This uptake is believed to be due to elevated CO<sub>2</sub> (eCO<sub>2</sub>) stimulating plant photosynthesis and growth, thus increasing carbon (C) storage in plants and soil organic matter. However, nitrogen (N) limitation can reduce ecosystem C uptake capacity under eCO<sub>2</sub> by as much as 50%. Phosphorus (P) limitation in ecosystems is almost as common as N-limitation and is increasing due to ongoing deposition of N from anthropogenic activities. Despite this, we do not know how P-limited ecosystems will respond to eCO<sub>2</sub>, constituting a major gap in our understanding of how large areas of the biosphere will impact atmospheric CO<sub>2</sub> over the coming decades.</p><p>In the first study conducted into the effect of eCO<sub>2</sub> on P-limited ecosystems with manipulated nutrient availability, the Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment project (PLACE), investigates the effects of eCO<sub>2</sub> on C cycling in grasslands, which are a critical global C store. Turf mesocosms from P-limited acidic and limestone grasslands, where N and P inputs have been manipulated for 20 years (control, low N (3.5 g m<sup>-2</sup> y<sup>-1</sup>), high N (14 g m<sup>-2</sup> y<sup>-1</sup>), and P (3.5 g m<sup>-2</sup> y<sup>-1</sup>)), have been exposed to either ambient or eCO<sub>2</sub> (600 ppm) in a miniFACE (mini Free Air Carbon Enrichment) system. Long-term P addition has alleviated P limitation while N additions have exacerbated it. The two contrasting grasslands contain different amounts of organic versus mineral P in their soils and, thus, plants may have to use contrasting strategies to acquire the additional P they need to increase growth rates under elevated CO<sub>2</sub>.</p><p>We present data from the first two growing seasons, including above and below ground productivity, and C, N and P cycling through plant, soil and microbial pools. Aboveground harvest data from the second year have shown eCO<sub>2</sub> has only increased biomass production in the limestone grassland (by 17%; p< 0.0001), and not in the acid grassland. There was also a significant effect of nutrient treatment (p< 0.001) with biomass increasing under P and HN, indicating some co-NP limitation. Stable isotope tracing, using the fumigation CO<sub>2</sub> signal has shown the fate of newly assimilated C and its contribution to gaseous C flux to the atmosphere in the form of methane (CH<sub>4</sub>) and respired CO<sub>2</sub>.  In summary, our first two years of eCO<sub>2</sub> treatment suggests that productivity of limestone and acidic grassland respond differently and that these responses depend on nutrient availability, indicating the complexity of predicting P-limited ecosystem responses as atmospheric CO<sub>2 </sub>continues to rise.</p>


Sign in / Sign up

Export Citation Format

Share Document