scholarly journals Plants increase silicon content as a response to nitrogen or phosphorus limitation: a case study with Holcus lanatus

Author(s):  
Vanessa Minden ◽  
Jörg Schaller ◽  
Harry Olde Venterink

Abstract Aims Silicon (Si) has been shown to beneficially affect plant performance under stressful environmental conditions, such as water or nutrient deficiency. Here we tested the effects of two important plant nutrients, nitrogen (N) and phosphorus (P), on Si content in different plant organs in the grass species Holcus lanatus. Methods We studied trait responses to N limitation, balanced nutrient availability and P limitation. Single plant individuals were grown in sand-filled pots in a greenhouse for 2 months. Nitrogen, phosphorus, carbon and silicon contents were determined in leaves, stems and roots, as were leaf and roots traits, biomass production and root enzyme activity. Results Si content was lowest under balanced nutrient supply in all plant organs. Under P limitation Si content was highest in leaves and stems, in roots it was highest under N limitation. Si:C ratios were lowest under balanced conditions, and highest under nutrient limitation. Root phosphatase activity was highest under P limitation and chlorophyll content was lowest under N limitation. Conclusions Our model species assimilated less ‘high cost C’ and took up more ‘low cost Si’ under nutrient limitation, especially under P deficiency. Si potentially plays an important role in different environments, such as nutrient or light limitation, which in turn may be related to different plant strategies, for example higher stem rigidity in high Si plants versus higher stem flexibility in low Si plants. More research is needed to further elucidate the role of silicon in different concepts of trait-environment relationships.

2002 ◽  
Vol 59 (8) ◽  
pp. 1339-1349 ◽  
Author(s):  
Margaret M Squires ◽  
Lance F.W Lesack

Relatively low phytoplankton production among lakes of the Mackenzie Delta has been attributed to light limitation in frequently flooded lakes and to nutrient limitation among infrequently flooded lakes; productivity peaks have been attributed to optimal light–nutrient conditions at intermediate flood frequency. We found that the distribution and abundance of phytoplankton among a large number of lakes was explained by optimal light–nutrient conditions but not by nutrient or light limitation. For a subset of lakes, seasonal dynamics of biomass were consistent with light limitation and optimal light–nutrient conditions but not nutrient limitation; photosynthetic rates were consistent with optimal light–nutrient conditions and nutrient limitation but not light limitation. Results of dilution–deletion experiments across a light–nutrient gradient indicated transition from light limitation to optimal light–nutrient conditions to nutrient limitation. Surprisingly, adding river water to lake water did not increase photosynthetic rates; this result and experimental incubations in situ during river inflow and lake outflow suggested that continuous supply of river water may be necessary to increase phytoplankton growth rates. Among infrequently flooded lakes, phytoplankton response to nutrient additions showed that phosphorus (P) limitation was no more likely than nitrogen (N) limitation, co-limitation, or no limitation by N or P.


2012 ◽  
Vol 9 (3) ◽  
pp. 3173-3232 ◽  
Author(s):  
D. S. Goll ◽  
V. Brovkin ◽  
B. R. Parida ◽  
C. H. Reick ◽  
J. Kattge ◽  
...  

Abstract. Terrestrial carbon (C) cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP) due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N) and phosphorus (P), nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH, which already includes representations of coupled C and N cycles. The model reveals a distinct geographic pattern of P and N limitation. Under the SRES A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes) and 16% (particularly at low latitudes) lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. However, the quantification of P limitation remains challenging as the poorly constrained processes of soil P sorption and biochemical mineralization strongly influence the strength of P limitation. After 2100, increased temperatures (+5 K) and high CO2 (700 ppm) concentrations cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitation. These findings indicate that global land C uptake in the 21st century is likely overestimated in models that neglect P and N limitation. In the long-term, insufficient P availability might become an important constraint on C cycling at high latitudes. Accordingly, we argue that the P cycle must be included in global models used for C cycle projections.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 221 ◽  
Author(s):  
Karen Brandenburg ◽  
Laura Siebers ◽  
Joost Keuskamp ◽  
Thomas G. Jephcott ◽  
Dedmer B. Van de Waal

Eutrophication has played a major role in the worldwide increase of harmful algal blooms (HABs). Higher input of key nutrients, such as nitrogen (N) and phosphorus (P), can stimulate the growth of harmful algal species in freshwater, estuarine, and coastal marine ecosystems. Some HAB-forming taxa, particularly several cyanobacteria and dinoflagellate species, are harmful through the production of N-rich toxins that have detrimental effects on the environment and human health. Here, we test how changes in nutrient availability affect N-rich toxin synthesis in cyanobacteria and dinoflagellates using a meta-analysis approach. Overall, N-rich toxin content showed an increase with P limitation, while it tended to decrease with N limitation, but we also observed substantial variation in responses both within and across genera and toxin groups. For instance, in response to N limitation, microcystin content varied from a 297% decrease up to a 273% increase, and paralytic shellfish poisoning (PSP) toxin content varied from a 204% decrease to an 82% increase. Cylindrospermopsin, produced by N2-fixing cyanobacteria, showed no clear direction in response to nutrient limitation, and cellular contents of this compound may thus vary independently of nutrient fluctuations. Our results confirm earlier reported stoichiometric regulation of N-rich phytoplankton toxins, showing increased toxin content with an increase in cellular N:P ratios, and vice versa. Thus, changes in N-rich toxin content largely follow the changes in relative cellular N content. Consequently, although nutrient limitation may limit bloom biomass and thereby bloom toxicity, our results warn that P limitation can cause accumulation of cellular toxins and thus lead to unexpected increases in bloom toxicity.


Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 47
Author(s):  
Malcolm A. Barnard ◽  
Justin D. Chaffin ◽  
Haley E. Plaas ◽  
Gregory L. Boyer ◽  
Bofan Wei ◽  
...  

Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.


1993 ◽  
Vol 71 (9) ◽  
pp. 1266-1269 ◽  
Author(s):  
Roy Turkington ◽  
Elena Klein

Ten individual plants of Trifolium repens L. were transplanted into a 49-year-old cattle pasture in British Columbia. They were protected from grazing and their subsequent growth was monitored at 2- to 3-week intervals throughout the summer from May to October. The rate of stolon elongation was greatest (2.01 cm ∙ week−1) in late July and a maximum rate of node production (1.48 new nodes per stolon ∙ week−1) occurred in early August. As stolons extended through the pasture they encountered a number of different grass species: Dactylis glomerata, Holcus lanatus, Lolium perenne, Phleum pratense, and Poa spp. The stolons grew through a total of 2 m of H. lanatus neighborhood and produced only 3 branches, whereas they produced 11 branches in only 57.2 cm of P. pratense neighborhood. Neighboring grasses impose different local environments on the nodes and stolons of T. repens and consequently influence the dynamics of node production, the rate of stolon elongation, and the amount of stolon branching. Key words: stolon branching, neighbors, light quality, Trifolium repens.


2009 ◽  
Vol 66 (9) ◽  
pp. 1435-1448 ◽  
Author(s):  
Courtney R. Salm ◽  
Jasmine E. Saros ◽  
Sherilyn C. Fritz ◽  
Christopher L. Osburn ◽  
David M. Reineke

We investigated patterns of primary production across prairie saline lakes in the central and northern Great Plains of the United States. Based on comparative lake sampling in 2004, seasonal predictors of algal primary productivity were identified within subsets of similar lakes using a combination of Akaike’s information criterion (AIC) and classification and regression trees (CART). These models indicated complex patterns of nutrient limitation by nitrogen (N), phosphorus (P), and iron (Fe) within different lake groups. Nutrient enrichment assays (control, + Fe, + N, + P, + N + P) were performed in spring and summer of 2006 to determine if phytoplankton in selected lakes followed predicted patterns of nutrient limitation. Both the comparative lake sampling and experimental results indicated that N limitation was widespread in these prairie lakes, with evidence for secondary P limitation in certain lakes. In the experiments, iron did not stimulate primary production. Our results suggest that given the diverse geochemical nature of these lakes, classification models that separate saline lakes into subsets may be an effective method for improving predictions of algal production.


Author(s):  
Jennifer Tank ◽  
Alexander Reisinger

Nutrient pollution of aquatic ecosystems is a growing concern as the influence of human activities continues to increase on the landscape. Headwater streams have long been shown to process nutrients via the biofilm community growing on the bottom of streams. The growth and activity of these biofilms is often limited by the availability of nitrogen (N), phosphorus (P), or co-limited by both N and P. Although small stream nutrient dynamics are relatively well understood, comparatively little is known about larger, non-wadeable rivers. Biofilms on the river bottom are likely still nutrient limited, but there becomes an increased potential for light limitation as rivers increase in depth. In addition to biofilms on the bottom of rivers, free-living microbial communities suspended in the water column also occur in rivers and process nutrients - a component of nutrient processing largely ignored in streams. In summer 2013 we worked in streams and rivers of the Greater Yellowstone Area (GYA) to establish the nutrient limitation status of minimally-impacted rivers, as well as the role of the water column in processing nutrients as streams increase in size. For both the nutrient limitation and water column uptake studies, we are using the GYA sites in addition to systems from other regions of the US to establish what controls the various aspects of nutrient dynamics in rivers. Our results from the GYA, in addition to Midwest and Southwest US rivers, will provide water quality managers with new strategies for improving water quality downstream, and clarify mechanisms controlling nutrient retention in rivers.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Claudia Colesie ◽  
Zsofia Reka Stangl ◽  
Vaughan Hurry

Abstract Background Fast growing invasive alien species are highly efficient with little investment in their tissues. They often outcompete slower growing species with severe consequences for diversity and community composition. The plant economics trait-based approach provides a theoretical framework, allowing the classification of plants with different performance characteristics. However, in multifaceted background, this approach needs testing. The evaluation and prediction of plant performance outcomes in ecologically relevant settings is among the most pressing topics to understand and predict ecosystem functioning, especially in a quickly changing environment. Temperature and nutrient availability are major components of the global environmental change and this study examines the response of growth economic traits, photosynthesis and respiration to such changes for an invasive fast-growing (Bromus hordaceus) and a slow-growing perennial (Bromus erectus) grass species. Results The fully controlled growth chamber experiment simulated temperature—and changes in nitrogen availability individually and in combination. We therefore provide maximum control and monitoring of growth responses allowing general growth trait response patterns to be tested. Under optimal nitrogen availability the slow growing B. erectus was better able to handle the lower temperatures (7 °C) whilst both species had problems at higher temperatures (30 °C). Stresses produced by a combination of heat and nutrient availability were identified to be less limiting for the slow growing species but the combination of chilling with low nutrient availability was most detrimental to both species. Conclusions For the fast-growing invader B. hordeaceus a reduction of nitrogen availability in combination with a temperature increase, leads to limited growth performance in comparison to the slow-growing perennial species B.erectus and this may explain why nutrient-rich habitats often experience more invasion than resource-poor habitats.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 980
Author(s):  
Agnieszka Dradrach ◽  
Anna Karczewska ◽  
Katarzyna Szopka

The study focused on two grass species Holcus lanatus and Agrostis capillaris abundant in the sites of former As mining and processing in the Sudetes. Arsenic uptake from soils was examined to assess a risk associated with its accumulation in grass shoots and to check its dependence on soil fertilization. The research involved a field study and greenhouse experiment. In the field study, soil and plant samples were collected from 33 sites with 72–98,400 mg/kg total soil As. Arsenic uptake by grasses differed widely. Both species indicated a strategy typical for eliminators, although As concentrations in more than 50% of the shoot samples exceeded 4 mg/kg, a maximum permissible value for fodder. In the greenhouse experiment, commercial cultivars of both species were grown in five soils containing 394–19,600 mg/kg, untreated and fertilized. All seedlings died in the soil with highest total As, and considerable phytotoxicity was observed in other soils, particularly in nonfertilized ones. Fertilization resulted in the improvement of plant growth and reduction of As uptake except for Agrostis capillaris fertilized with manure. Further research should focus on identifying tolerant genotypes growing in extremely enriched sites and analysis of factors that will efficiently reduce As phytoaccumulation.


2020 ◽  
Author(s):  
Svenja Stock ◽  
Moritz Köster ◽  
Jens Boy ◽  
Roberto Godoy ◽  
Francisco Nájera ◽  
...  

<p>Arbuscular mycorrhizal fungi (AMF) are important partners in plant nutrition, as they increase the range to scavenge for nutrients and can access resources otherwise occlude for plants. Under water shortage, when mobility of nutrients in soil is limited, AMF are especially important to acquire resources and can modulate plant drought resistance. Strategies of plants to cope with water and nutrient restrictions are shaped by the intensity of aridity. To investigate the effect of aridity on plant-AMF associations regarding drought resistance and plant nutrient acquisition, a <sup>13</sup>CO<sub>2</sub> pulse labeling was conducted across an aridity gradient. In a semiarid shrubland (66 mm a<sup>-1</sup>), a Mediterranean woodland (367 mm a<sup>-1</sup>), and a humid temperate forest (1500 mm a<sup>-1</sup>), root and soil samples were taken from 0-10 cm and 20-30 cm soil depth before labeling and at 1 day, 3 days, and 14 days after labeling. Carbon (C), nitrogen (N), and phosphorus (P) stocks as well as AMF root colonization, extraradical AMF biomass (phospho- and neutral lipid fatty acids (PLFA and NLFA) 16:1w5c), specific root length (SRL), and root tissue density (RTD) were measured. Plant C investment into AMF and roots was determined by the <sup>13</sup>C incorporation in 16:1w5c (PLFA and NLFA) and root tissue, respectively. Soil C:N:P stoichiometry indicated a N and P limitation under humid conditions and a P limitation in the topsoil under Mediterranean conditions. N stocks were highest in the Mediterranean woodland. A strong correlation of the AMF storage compound NLFA 16:1w5c to C:P ratio under semiarid conditions pointed to a P limitation of AMF, likely resulting from low P mobility in dry and alkaline soils. With increasing aridity, the AMF abundance in root (and soil) decreased from 45% to 20% root area. <sup>13</sup>C incorporation in PLFA 16:1w5c was similar across sites, while relative AMF abundance in topsoil (PLFA 16:1w5c:SOC) was slightly higher under semiarid and humid than under Mediterranean conditions, pointing to the importance of AMF for plant nutrition under nutrient limitation. Additionally, PLFA 16:1w5c contents in soil were higher with lower P availability in each site, underlining the role of AMF to supply P for plants under P deficiency. Under humid conditions (with strong N and P limitation) and semiarid conditions (with strong water limitation), root AMF colonization increased with lower N availability, displaying the role of AMF for plant N nutrition under nutrient and/or water shortage. Under humid and Mediterranean conditions, SRL decreased (0.5 and 0.3 times, respectively) and RTD increased (1.9 and 1.7 times, respectively) with depth, indicating a drought tolerance strategy of plants to sustain water shortage. Under semiarid conditions, SRL increased with depth (2.3 times), while RTD was consistently high, suggesting an increasing proportion of long-living fine roots with depth as scavenging agents for water. These relations point to a drought avoidance strategy of plants as adaptation to long-term water limitation. Under strong nutrient limitation, as under humid and semiarid conditions, AMF are crucial to sustain plant nutrition and to enhance plant resistance to water shortage.</p>


Sign in / Sign up

Export Citation Format

Share Document