scholarly journals Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years

2020 ◽  
Vol 14 (3) ◽  
pp. 881-904
Author(s):  
Kirstin Hoffmann ◽  
Francisco Fernandoy ◽  
Hanno Meyer ◽  
Elizabeth R. Thomas ◽  
Marcelo Aliaga ◽  
...  

Abstract. Antarctica is well known to be highly susceptible to atmospheric and oceanic warming. However, due to the lack of long-term and in situ meteorological observations, little is known about the magnitude of the warming and the meteorological conditions in the intersection region between the Antarctic Peninsula (AP), the West Antarctic Ice Sheet (WAIS) and the East Antarctic Ice Sheet (EAIS). Here we present new stable water isotope data (δ18O, δD, d excess) and accumulation rates from firn cores in the Union Glacier (UG) region, located in the Ellsworth Mountains at the northern edge of the WAIS. The firn core stable oxygen isotopes and the d excess exhibit no statistically significant trend for the period 1980–2014, suggesting that regional changes in near-surface air temperature and moisture source variability have been small during the last 35 years. Backward trajectory modelling revealed the Weddell Sea sector, Coats Land and Dronning Maud Land (DML) to be the main moisture source regions for the study site throughout the year. We found that mean annual δ18O (δD) values in the UG region are negatively correlated with sea ice concentrations (SICs) in the northern Weddell Sea but not influenced by large-scale modes of climate variability such as the Southern Annular Mode (SAM) and the El Niño–Southern Oscillation (ENSO). Only mean annual d-excess values show a weak positive correlation with the SAM. On average annual snow accumulation in the UG region amounts to 0.245 m w.e. a−1 in 1980–2014 and has slightly decreased during this period. It is only weakly related to sea ice conditions in the Weddell Sea sector and not correlated with SAM and ENSO. We conclude that neither the rapid warming nor the large increases in snow accumulation observed on the AP and in West Antarctica during the last decades have extended inland to the Ellsworth Mountains. Hence, the UG region, although located at the northern edge of the WAIS and relatively close to the AP, exhibits rather stable climate characteristics similar to those observed in East Antarctica.

2018 ◽  
Author(s):  
Kirstin Hoffmann ◽  
Francisco Fernandoy ◽  
Hanno Meyer ◽  
Elizabeth R. Thomas ◽  
Marcelo Aliaga ◽  
...  

Abstract. West Antarctica is well-known as a region that is highly susceptible to atmospheric and oceanic warming. However, due to the lack of long–term and in–situ meteorological observations little is known about the magnitude of the warming and the meteorological conditions in the region at the intersection between the Antarctic Peninsula (AP), the West Antarctic Ice Sheet (WAIS) and the East Antarctic Ice Sheet (EAIS). Here we present new stable water isotope data (δ18O, δD, d excess) and accumulation rates from firn cores in the Union Glacier (UG) region, located in the Ellsworth Mountains at the northern edge of the WAIS. The firn core stable oxygen isotope composition reveals no statistically significant trend for the period 1980–2014 suggesting that regional changes in near-surface air temperature have been small during the last 35 years. As for stable oxygen isotopes no statistically significant trend has been found for the d excess suggesting overall little change in the main moisture sources and the origin of precipitating air masses for the UG region at least since 1980. Backward trajectory modelling revealed the Weddell Sea sector to be the likely main moisture source region for the study site throughout the year. We found that mean annual δ–values in the UG region are correlated with sea ice concentrations in the northern Weddell Sea, but are not strongly influenced by large-scale modes of climate variability such as the Southern Annular Mode (SAM) and the El Niño–Southern Oscillation (ENSO). Only mean annual d excess values are weakly positively correlated with the SAM. On average snow accumulation in the UG region amounts to about 0.25 m w.eq. a−1 between 1980 and 2014. Mean annual snow accumulation has slightly decreased since 1980 (−0.001 m w.eq. a−1, p–value = 0.006). However, snow accumulation at UG is neither correlated with sea ice nor with SAM and ENSO confirming that the large increases in snow accumulation observed on the AP and in other coastal regions of Antarctica have not extended inland to the Ellsworth Mountains. We conclude that the UG region – located in the transition zone between the AP, the WAIS and the EAIS – is exhibiting rather East than West Antarctic climate characteristics.


2021 ◽  
Author(s):  
Alan Aitken ◽  
Lu Li ◽  
Bernd Kulessa ◽  
Thomas Jordan ◽  
Joanne Whittaker ◽  
...  

<p>Subglacial and ice-sheet marginal sedimentary basins have very different physical properties to crystalline bedrock and, therefore, form distinct conditions that influence the flow of ice above. Sedimentary rocks are particularly soft and erodible, and therefore capable of sustaining layers of subglacial till that may deform to facilitate fast ice flow downstream. Furthermore, sedimentary rocks are relatively permeable and thus allow for enhanced fluid flux, with associated impacts on ice-sheet dynamics, including feedbacks with subglacial hydrologic systems and transport of heat to the ice-sheet bed. Despite the importance for ice-sheet dynamics there is, at present, no comprehensive record of sedimentary basins in the Antarctic continent, limiting our capacity to investigate these influences. Here we develop the first version of an Antarctic-wide spatial database of sedimentary basins, their geometries and physical attributes. We emphasise the definition of in-situ and undeformed basins that retain their primary characteristics, including relative weakness and high permeability, and therefore are more likely to influence ice sheet dynamics. We define the likely extents and nature of sedimentary basins, considering a range of geological and geophysical data, including: outcrop observations, gravity and magnetic data, radio-echo sounding data and passive and active-source seismic data. Our interpretation also involves derivative products from these data, including analyses guided by machine learning. The database includes for each basin its defining characteristics in the source datasets, and interpreted information on likely basin age, sedimentary thickness, surface morphology and tectonic type. The database is constructed in ESRI geodatabase format and is suitable for incorporation in multifaceted data-interpretation and modelling procedures. It can be readily updated given new information. We define extensive basins in both East and West Antarctica, including major regions in the Ross and Weddell Sea embayments and the Amundsen Sea region of West Antarctica, and the Wilkes, Aurora and Recovery subglacial basins of East Antarctica. The compilation includes smaller basins within crystalline-bedrock dominated areas such as the Transantarctic Mountains, the Antarctic Peninsula and Dronning Maud Land. The distribution of sedimentary basins reveals the combined influence of the tectonic and glacial history of Antarctica on the current and future configuration of the Antarctic Ice Sheet and highlights areas in which the presence of dynamically-evolving subglacial till layers and the exchange of groundwater and heat with the ice sheet bed  are more likely, contributing to dynamic behaviour of the Antarctic Ice Sheet.  </p>


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

<p>The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica’s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.</p><p>Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.</p><p>Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula’s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.</p>


2019 ◽  
Vol 15 (2) ◽  
pp. 751-779 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may thus mark the onset of significant increases in regional sea-ice extent.


2020 ◽  
Author(s):  
Jan Lenaerts ◽  
Eric Keenan ◽  
Nander Wever ◽  
Marissa Dattler ◽  
Carleen Reijmer ◽  
...  

<p>Surface mass balance (SMB) represents a large uncertainty in characterizing Antarctic Ice Sheet (AIS) mass balance. Atmospheric reanalysis products, which are commonly used for AIS SMB studies, do not include small-scale snow redistribution processes even though these can be of the same order of magnitude as snow accumulation in many parts of the AIS. Therefore, a proper representation of these processes is critical to interpret local SMB and firn observations, such as from ICESat-2 repeat altimetry. In this study, we use a detailed, multi-layer snow model (SNOWPACK) forced by a global atmospheric reanalysis (MERRA-2). Firstly, we show that a new accumulation scheme, designed to better represent wind-driven snow compaction in SNOWPACK, substantially reduces simulated biases in near-surface snow density at 131 locations across the AIS. Next, we employ a distributed version of SNOWPACK to two regions on the AIS, and compare the simulation output to airborne radar and in-situ observations of SMB. Our results demonstrate that SNOWPACK can capture the timing of blowing snow events, snow erosion events, as well as observed kilometer-scale spatial SMB variability. This study illustrates the importance of using high-resolution SMB models when converting surface height (volume) observations to mass changes.</p>


2019 ◽  
Vol 11 (6) ◽  
pp. 653 ◽  
Author(s):  
Chunchun Gao ◽  
Yang Lu ◽  
Zizhan Zhang ◽  
Hongling Shi

Many recent mass balance estimates using the Gravity Recovery and Climate Experiment (GRACE) and satellite altimetry (including two kinds of sensors of radar and laser) show that the ice mass of the Antarctic ice sheet (AIS) is in overall decline. However, there are still large differences among previously published estimates of the total mass change, even in the same observed periods. The considerable error sources mainly arise from the forward models (e.g., glacial isostatic adjustment [GIA] and firn compaction) that may be uncertain but indispensable to simulate some processes not directly measured or obtained by these observations. To minimize the use of these forward models, we estimate the mass change of ice sheet and present-day GIA using multi-geodetic observations, including GRACE and Ice, Cloud and land Elevation Satellite (ICESat), as well as Global Positioning System (GPS), by an improved method of joint inversion estimate (JIE), which enables us to solve simultaneously for the Antarctic GIA and ice mass trends. The GIA uplift rates generated from our JIE method show a good agreement with the elastic-corrected GPS uplift rates, and the total GIA-induced mass change estimate for the AIS is 54 ± 27 Gt/yr, which is in line with many recent GPS calibrated GIA estimates. Our GIA result displays the presence of significant uplift rates in the Amundsen Sea Embayment of West Antarctica, where strong uplift has been observed by GPS. Over the period February 2003 to October 2009, the entire AIS changed in mass by −84 ± 31 Gt/yr (West Antarctica: −69 ± 24, East Antarctica: 12 ± 16 and the Antarctic Peninsula: −27 ± 8), greater than the GRACE-only estimates obtained from three Mascon solutions (CSR: −50 ± 30, JPL: −71 ± 30, and GSFC: −51 ± 33 Gt/yr) for the same period. This may imply that single GRACE data tend to underestimate ice mass loss due to the signal leakage and attenuation errors of ice discharge are often worse than that of surface mass balance over the AIS.


2014 ◽  
Vol 26 (6) ◽  
pp. 674-686 ◽  
Author(s):  
C.J. Fogwill ◽  
C.S.M. Turney ◽  
N.R. Golledge ◽  
D.H. Rood ◽  
K. Hippe ◽  
...  

AbstractDetermining the millennial-scale behaviour of marine-based sectors of the West Antarctic Ice Sheet (WAIS) is critical to improve predictions of the future contribution of Antarctica to sea level rise. Here high-resolution ice sheet modelling was combined with new terrestrial geological constraints (in situ14C and 10Be analysis) to reconstruct the evolution of two major ice streams entering the Weddell Sea over 20 000 years. The results demonstrate how marked differences in ice flux at the marine margin of the expanded Antarctic ice sheet led to a major reorganization of ice streams in the Weddell Sea during the last deglaciation, resulting in the eastward migration of the Institute Ice Stream, triggering a significant regional change in ice sheet mass balance during the early to mid Holocene. The findings highlight how spatial variability in ice flow can cause marked changes in the pattern, flux and flow direction of ice streams on millennial timescales in this marine ice sheet setting. Given that this sector of the WAIS is assumed to be sensitive to ocean-forced instability and may be influenced by predicted twenty-first century ocean warming, our ability to model and predict abrupt and extensive ice stream diversions is key to a realistic assessment of future ice sheet sensitivity.


2019 ◽  
Vol 32 (3) ◽  
pp. 665-684 ◽  
Author(s):  
Ryan C. Scott ◽  
Julien P. Nicolas ◽  
David H. Bromwich ◽  
Joel R. Norris ◽  
Dan Lubin

Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.


2017 ◽  
Vol 11 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Susanne Preunkert ◽  
Michel Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.


2004 ◽  
Vol 39 ◽  
pp. 181-187 ◽  
Author(s):  
Qin Dahe ◽  
Xiao Cunde ◽  
Ian Allison ◽  
Bian Lingen ◽  
Rod Stephenson ◽  
...  

AbstractThe net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a 1 year record of hourly snow-height measurements that shows its seasonal variability. The measurements were made with an ultrasonic sensor mounted on an automatic weather station (AWS) installed at LGB69, Princess Elizabeth Land, Antarctica (70.835˚S, 77.075˚E; 1850 ma.s.l.). The average accumulation at this site is approximately 0.70 m snow a–1. Throughout the winter, between April and September, there was little change in surface snow height. The strongest accumulation occurred during the period October–March, with four episodic increases occurring during 2002. These episodic events coincided with obvious humidity ‘pulses’ and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km north-northeast of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anticorrelation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.


Sign in / Sign up

Export Citation Format

Share Document