scholarly journals In situ cosmogenic <sup>10</sup>Be–<sup>14</sup>C–<sup>26</sup>Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size

2021 ◽  
Vol 17 (1) ◽  
pp. 419-450
Author(s):  
Nicolás E. Young ◽  
Alia J. Lesnek ◽  
Josh K. Cuzzone ◽  
Jason P. Briner ◽  
Jessica A. Badgeley ◽  
...  

Abstract. Sometime during the middle to late Holocene (8.2 ka to ∼ 1850–1900 CE), the Greenland Ice Sheet (GrIS) was smaller than its current configuration. Determining the exact dimensions of the Holocene ice-sheet minimum and the duration that the ice margin rested inboard of its current position remains challenging. Contemporary retreat of the GrIS from its historical maximum extent in southwestern Greenland is exposing a landscape that holds clues regarding the configuration and timing of past ice-sheet minima. To quantify the duration of the time the GrIS margin was near its modern extent we develop a new technique for Greenland that utilizes in situ cosmogenic 10Be–14C–26Al in bedrock samples that have become ice-free only in the last few decades due to the retreating ice-sheet margin at Kangiata Nunaata Sermia (n=12 sites, 36 measurements; KNS), southwest Greenland. To maximize the utility of this approach, we refine the deglaciation history of the region with stand-alone 10Be measurements (n=49) and traditional 14C ages from sedimentary deposits contained in proglacial–threshold lakes. We combine our reconstructed ice-margin history in the KNS region with additional geologic records from southwestern Greenland and recent model simulations of GrIS change to constrain the timing of the GrIS minimum in southwest Greenland and the magnitude of Holocene inland GrIS retreat, as well as to explore the regional climate history influencing Holocene ice-sheet behavior. Our 10Be–14C–26Al measurements reveal that (1) KNS retreated behind its modern margin just before 10 ka, but it likely stabilized near the present GrIS margin for several thousand years before retreating farther inland, and (2) pre-Holocene 10Be detected in several of our sample sites is most easily explained by several thousand years of surface exposure during the last interglaciation. Moreover, our new results indicate that the minimum extent of the GrIS likely occurred after ∼5 ka, and the GrIS margin may have approached its eventual historical maximum extent as early as ∼2 ka. Recent simulations of GrIS change are able to match the geologic record of ice-sheet change in regions dominated by surface mass balance, but they produce a poorer model–data fit in areas influenced by oceanic and dynamic processes. Simulations that achieve the best model–data fit suggest that inland retreat of the ice margin driven by early to middle Holocene warmth may have been mitigated by increased precipitation. Triple 10Be–14C–26Al measurements in recently deglaciated bedrock provide a new tool to help decipher the duration of smaller-than-present ice over multiple timescales. Modern retreat of the GrIS margin in southwest Greenland is revealing a bedrock landscape that was also exposed during the migration of the GrIS margin towards its Holocene minimum extent, but it has yet to tap into a landscape that remained ice-covered throughout the entire Holocene.

2020 ◽  
Author(s):  
Nicolás E. Young ◽  
Alia J. Lesnek ◽  
Josh K. Cuzzone ◽  
Jason P. Briner ◽  
Jessica A. Badgeley ◽  
...  

Abstract. During the middle to late Holocene (8.2 ka BP to present), the Greenland Ice Sheet (GrIS) was smaller than its current configuration. Determining the exact dimensions of the Holocene ice-sheet minimum and the duration that the ice margin rested inboard of its current position remains challenging. Contemporary retreat of the GrIS from its historical maximum extent in southwestern Greenland is exposing a landscape that holds clues regarding the configuration and timing of past ice-sheet minima. To quantify the duration of the time the GrIS margin was near its modern extent we develop a new technique on Greenland that utilizes in situ cosmogenic 10Be-14C-26Al in bedrock samples that have become ice free only in the last few decades by the retreating ice-sheet margin at Kangiata Nunaata Sermia (n = 12 sites; KNS), southwest Greenland. To maximize the utility of this approach, we refine the deglaciation history of the region with stand-alone 10Be measurements (n = 49) and traditional 14C ages from sedimentary deposits contained in proglacial-threshold lakes. We combine our reconstructed ice-margin history in the KNS region with additional geologic records from southwestern Greenland and recent model simulations of GrIS change, to constrain the timing of the GrIS minimum in southwest Greenland, the magnitude of Holocene inland GrIS retreat, and explore the regional climate history influencing Holocene ice-sheet behavior. Our 10Be-14C-26Al measurements reveal that 1) KNS retreated behind its modern margin just before 10 ka, but likely stabilized near the present GrIS margin for several thousand years before retreating farther inland, and 2) pre-Holocene 10Be detected in several of our sample sites is most easily explained by several thousand years of surface exposure during the Last Interglaciation. Moreover, our new results indicate that the minimum extent of the GrIS likely occurred after ~ 5 ka, and the GrIS margin may have approached its eventual historical maximum extent as early as ~ 2 ka. Recent simulations of GrIS change are able to match the geologic record of ice-sheet change in regions dominated by surface mass balance, but produce a poorer model-data fit in areas influenced by oceanic and dynamic processes. Simulations that achieve the best model-data fit suggest that inland retreat of the ice margin driven by early to middle Holocene warmth may have been mitigated by increased precipitation. Triple 10Be-14C-26Al measurements in recently deglaciated bedrock provide a new tool to help decipher the duration of smaller-than-present ice over multiple timescales. Modern retreat of the GrIS margin in southwest Greenland is revealing a bedrock landscape that was also exposed during the migration of the GrIS margin towards its Holocene minimum extent, but has yet to tap into a landscape that remained ice covered throughout the entire Holocene.


2014 ◽  
Vol 8 (5) ◽  
pp. 4737-4778
Author(s):  
S. E. Moustafa ◽  
A. K. Rennermalm ◽  
L. C. Smith ◽  
M. A. Miller ◽  
J. R. Mioduszewski

Abstract. Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325–1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10–14 and 20–24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.


2020 ◽  
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Michiel R. van den Broeke

Abstract. This study evaluates the impact of a new snow and ice albedo and radiative transfer scheme on the surface mass and energy budget for the Greenland ice sheet in the latest version of the regional climate model RACMO2, version 2.3p3. We also evaluate the modeled (sub)surface temperature and snow melt, as subsurface heating by radiation penetration now occurs. The results are compared to the previous model version and are evaluated against stake measurements and automatic weather station data of the K-transect and PROMICE projects. In addition, subsurface snow temperature profiles are compared at the K-transect, Summit and southeast Greenland. The surface mass balance is in good agreement with observations, and only changes considerably with respect to the previous RACMO2 version around the ice margins and in the percolation zone. Snow melt and refreezing, on the other hand, are changed more substantially in various regions due to the changed albedo representation, subsurface energy absorption and melt water percolation. Internal heating leads to considerably higher snow temperatures in summer, in agreement with observations, and introduces a shallow layer of subsurface melt.


2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


2015 ◽  
Vol 9 (5) ◽  
pp. 1831-1844 ◽  
Author(s):  
B. Noël ◽  
W. J. van de Berg ◽  
E. van Meijgaard ◽  
P. Kuipers Munneke ◽  
R. S. W. van de Wal ◽  
...  

Abstract. We discuss Greenland Ice Sheet (GrIS) surface mass balance (SMB) differences between the updated polar version of the RACMO climate model (RACMO2.3) and the previous version (RACMO2.1). Among other revisions, the updated model includes an adjusted rainfall-to-snowfall conversion that produces exclusively snowfall under freezing conditions; this especially favours snowfall in summer. Summer snowfall in the ablation zone of the GrIS has a pronounced effect on melt rates, affecting modelled GrIS SMB in two ways. By covering relatively dark ice with highly reflective fresh snow, these summer snowfalls have the potential to locally reduce melt rates in the ablation zone of the GrIS through the snow-albedo-melt feedback. At larger scales, SMB changes are driven by differences in orographic precipitation following a shift in large-scale circulation, in combination with enhanced moisture to precipitation conversion for warm to moderately cold conditions. A detailed comparison of model output with observations from automatic weather stations, ice cores and ablation stakes shows that the model update generally improves the simulated SMB-elevation gradient as well as the representation of the surface energy balance, although significant biases remain.


2012 ◽  
Vol 6 (2) ◽  
pp. 255-272 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.


2020 ◽  
Author(s):  
Christiaan van Dalum ◽  
Willem Jan van de Berg ◽  
Stef Lhermitte ◽  
Michiel van den Broeke

&lt;p&gt;Snow and ice albedo schemes in present day climate models often lack a sophisticated radiation penetration scheme and are limited to a broadband albedo. In this study, we evaluate a new snow albedo scheme in the regional climate model RACMO2 that uses the two-stream radiative transfer in snow model TARTES and the spectral-to-narrowband albedo module SNOWBAL for the Greenland ice sheet. Additionally, the bare ice albedo parameterization has been updated. The snow and ice albedo output of the updated version of RACMO2, referred to as RACMO2.3p3, is evaluated using PROMICE and K-transect in-situ data and MODIS remote-sensing observations. Generally, the RACMO2.3p3 albedo is in very good agreement with satellite observations, leading to a domain-averaged bias of only -0.012. Some discrepancies are, however, observed for regions close to the ice margin. Compared to the previous iteration RACMO2.3p2, the albedo of RACMO2.3p3 is considerably higher in the bare ice zone during the ablation season, as atmospheric conditions now alter the bare ice albedo. For most other regions, however, the albedo of RACMO2.3p3 is lower due to spectral effects, radiation penetration, snow metamorphism or a delayed firn-ice transition. Furthermore, a white-out effect during cloudy conditions is captured and the snow albedo shows a low sensitivity to low soot concentrations. The surface mass balance of RACMO2.3p3 compares well with observations. Subsurface heating, however, now leads to increased melt and refreezing in south Greenland, changing the snow structure.&lt;/p&gt;


2020 ◽  
Author(s):  
Sonja Wahl ◽  
Hans Christian Steen-Larsen ◽  
Alexandra Zuhr ◽  
Joachim Reuder

&lt;p&gt;Water isotopologues offers a direct constraint on the physical processes controlling surface fluxes.&amp;#160; A novel method is presented which enables in-situ measurements of the water vapour isotope flux between the snow surface of the Greenland Ice Sheet and the atmosphere.&lt;/p&gt;&lt;p&gt;These observations have become possible by combining a cavity ring-down laser absorption spectroscopy analyzer with high frequency latent heat flux eddy-covariance measurements.&lt;/p&gt;&lt;p&gt;This new method reveals an isotope flux driven by the diurnal cycle.&lt;br&gt;Water isotopes can thus act as a natural tracer giving information of the physical processes such as the influence of turbulent fluxes in the water cycle. This allows the assessment of sublimation and deposition processes in the low accumulation zone of the interior Greenland Ice Sheet.&lt;br&gt;Therefore, we can provide a strategy to benchmark the parameterizations of surface mass balance and surface fluxes in regional climate models.&lt;/p&gt;


2015 ◽  
Vol 9 (2) ◽  
pp. 691-701 ◽  
Author(s):  
C. Cox ◽  
N. Humphrey ◽  
J. Harper

Abstract. On the Greenland ice sheet, a significant quantity of surface meltwater refreezes within the firn, creating uncertainty in surface mass balance estimates. This refreezing has the potential to buffer seasonal runoff to future increases in melting, but direct measurement of the process remains difficult. We present a method for quantifying refreezing at point locations using in situ firn temperature observations. A time series of sub-hourly firn temperature profiles were collected over the course of two melt seasons from 2007 to 2009 along a transect of 11 sites in the accumulation zone of Greenland. Seasonal changes in temperature profiles combined with heat flux estimates based on high-temporal-resolution temperature gradients enable us to isolate the heat released by refreezing using conservation of energy. Our method is verified from winter data when no refreezing takes place, and uncertainty is estimated using a Monte Carlo technique. While we limit our method to a subsection of firn between depths of 1 and 10 m, our refreezing estimates appear to differ significantly from model-based estimates. Furthermore, results indicate that a significant amount of refreezing takes place at depths greater than 1 m and that lateral migration of meltwater significantly complicates the relationship between total surface melt and total refreezing.


Sign in / Sign up

Export Citation Format

Share Document