Comment on "Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks".

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Vol 13 (11) ◽  
pp. 1593-1608 ◽  
Author(s):  
Jasper G. Franke ◽  
Johannes P. Werner ◽  
Reik V. Donner

Abstract. Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify co-variability between southern Greenland, Svalbard, and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.


2017 ◽  
Author(s):  
Jasper G. Franke ◽  
Johannes P. Werner ◽  
Reik V. Donner

Abstract. Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millenia. The emerging patterns obtained by our analysis are intimately related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify strong co-variability between Southern Greenland, Svalbard and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to Central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.


2020 ◽  
Author(s):  
Federico Fabiano ◽  
Virna Meccia ◽  
Paolo Davini ◽  
Paolo Ghinassi ◽  
Susanna Corti

Abstract. Future wintertime atmospheric circulation changes in the Euro-Atlantic (EAT) and Pacific-North American (PNA) sectors are studied from a Weather Regimes perspective. The CMIP5 and CMIP6 historical simulations performance in reproducing the observed regimes is first evaluated, showing a general improvement of CMIP6 models, more evident for EAT. The circulation changes projected by CMIP5 and CMIP6 scenario simulations are analyzed in terms of the change in the frequency and persistence of the regimes. In the EAT sector, significant positive trends are found for the frequency and persistence of NAO+ for SSP245, SSP370 and SSP585 scenarios, with a concomitant decrease in the frequency of the Scandinavian Blocking and Atlantic Ridge regimes. For PNA, the Pacific Through regime shows a significant increase, while the Bering Ridge is predicted to decrease in all scenarios analyzed. The spread among the model responses is linked to different levels of warming in the Polar Stratosphere, the North Atlantic and the Arctic.


2009 ◽  
Vol 5 (3) ◽  
pp. 1609-1644 ◽  
Author(s):  
C. E. Jonsson ◽  
S. Andersson ◽  
G. C. Rosqvist ◽  
M. J. Leng

Abstract. Here we use lake sediment studies from Sweden to illustrate how Holocene-aged oxygen isotope records (from lakes located in different hydrological settings) can provide information about climate change. In particular changes in precipitation, atmospheric circulation and water balance. We highlight the importance of understanding the present and past lake hydrology, and the relationship between climate parameters and the oxygen isotopic composition of precipitation (δ18Op) and lake waters (δ18Olakewater) for interpretation of the oxygen isotopic record from the sediments (δ18O). Both precipitation reconstructions from northern Sweden and water balance reconstructions from south and central Sweden show that the atmospheric circulation changed from zonal to a more meridional air flow over the Holocene. Superimposed on this Holocene trend are δ18Op minima resembling intervals of the negative phase of the North Atlantic Oscillation (NAO), thus suggesting that the climate of northern Europe is strongly influenced by atmospheric and oceanic circulation changes over the North Atlantic.


2021 ◽  
Vol 2 (1) ◽  
pp. 163-180
Author(s):  
Federico Fabiano ◽  
Virna L. Meccia ◽  
Paolo Davini ◽  
Paolo Ghinassi ◽  
Susanna Corti

Abstract. Future wintertime atmospheric circulation changes in the Euro–Atlantic (EAT) and Pacific–North American (PAC) sectors are studied from a weather regimes perspective. The Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6) historical simulation performance in reproducing the observed regimes is first evaluated, showing a general improvement in the CMIP6 models, which is more evident for EAT. The circulation changes projected by CMIP5 and CMIP6 scenario simulations are analysed in terms of the change in the frequency and persistence of the regimes. In the EAT sector, significant positive trends are found for the frequency and persistence of NAO+ (North Atlantic Oscillation) for SSP2–4.5, SSP3–7.0 and SSP5–8.5 scenarios with a concomitant decrease in the frequency of the Scandinavian blocking and Atlantic Ridge regimes. For PAC, the Pacific Trough regime shows a significant increase, while the Bering Ridge is predicted to decrease in all scenarios analysed. The spread among the model responses is linked to different levels of warming in the polar stratosphere, the tropical upper troposphere, the North Atlantic and the Arctic.


Sign in / Sign up

Export Citation Format

Share Document