scholarly journals Overcoming model instability in tree-ring-based temperature reconstructions using a multi-species method: A case study from the Changbai Mountains, northeastern China

2021 ◽  
Author(s):  
Liangjun Zhu ◽  
Shuguang Liu ◽  
Haifeng Zhu ◽  
David J. Cooper ◽  
Danyang Yuan ◽  
...  

Abstract. The unstable sensitivity of growth-climate relationships greatly restricts tree-ring-based paleoclimate reconstructions, especially in areas with frequent divergence problems, such as the temperate zone in northeast China. Here, we propose an original tree-species mixing method to overcome this obstacle and improve the stability and reliability of reconstruction models. We take the tree-ring based growing-season minimum temperature reconstruction for the northern Changbai Mountains in northeast China as an example to illustrate the method. Compared with previous temperature reconstruction models, our reconstruction model is more stable and reliable and explains up to 68 % of the variance. It is also highly consistent with historical records and tree-ring-based temperature reconstructions from the nearby Xiaoxing'an Mountains and from across the Northern Hemisphere. Our reconstruction uses two different tree species and is more accurate than temperature reconstructions developed from a single species. Over the past 259 years (AD 1757–2015), five significant cold periods and five warm periods were identified. The reconstruction indicates rapid warming since the 1980s, which is consistent with other instrumental and reconstructed records. We also found the Atlantic Multidecadal Oscillation plays a crucial role in driving the growing-season minimum temperature in the northern Changbai Mountains.

2009 ◽  
Vol 5 (2) ◽  
pp. 1215-1229
Author(s):  
H. F. Zhu ◽  
X. Q. Fang ◽  
X. M. Shao ◽  
Z. Y. Yin

Abstract. Long-term climatic records are scarce in the northeast Asia for understanding the behavior of the East Asian Winter Monsoon. Here we describe a 250-year February–April temperature reconstruction (TCBM) based on tree-ring widths of Korean Pines from the Changbai Mountain area, Northeast China. The reconstruction can account for 45.7% of the temperature variance in the instrumental period (1953 to 2001). Four cold events including 1784–1815, 1827–1851, 1878–1889 and 1911–1945, and two warm events of 1750–1783 and 1855–1877 were identified before the instrumental period. Four regime shifts were also detected at 1781, 1857, 1878 and 1989. Good agreements between TCBM and other temperature records of East Asia suggest that the reconstruction is of good reliability and captures the regional cold/warm events of East Asia. Moreover, TCBM shows negative correlations with the instrumental or proxy-based EAWM intensity records. The known weakening of the EAWM in the late 1980s is in agreement with the regime shift at 1989 in TCBM. These comparisons suggest that the February–April temperature reconstruction may be a good indicator of the EAWM intensity.


2021 ◽  
Vol 251 ◽  
pp. 106712
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Guohua Liu ◽  
Bojie Fu ◽  
Zexin Fan ◽  
...  

2016 ◽  
Author(s):  
Liangjun Zhu ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
Binde Guo ◽  
Xiaochun Wang

Abstract. We present a reconstruction of July–August mean maximum temperature variability for northern West Sichuan Plateau (NWSP), China based on a chronology of tree-ring widths over the period 1646–2013 AD. A regression model explains 37.1 % of the variance of July–August mean maximum temperature during the calibration period from 1954 to 2012. Seven major cold periods were identified including 1708–1711, 1765–1769, 1818–1821, 1824–1828, 1832–1836, 1839–1842 and 1869–1877, and three major warm periods occurred between 1655–1668, 1719–1730 and 1858–1859 in our reconstruction. Comparison with other nearby temperature reconstructions and spatial correlations with gridded land surface temperature dates revealed that our temperature reconstruction has high spatial representativeness. 20th century rapid warming wasn’t obvious in the NWSP mean maximum temperature reconstruction, which implied that mean maximum temperature might play an important and different role in global change as unique temperature indicators. Multi-taper method (MTM) spectral analysis revealed significant periodicities of 170-, 49–114-, 25–32-, 5.7-, 4.6–4.7-, 3.0–3.1-, 2.5- and 2.1–2.3-year quasi-cycles at a 95 % confidence level. The mean maxi mum temperature variability in northwest Sichuan may be affected by ENSO, PDO, AMO and solar activity.


2020 ◽  
Author(s):  
Josef Ludescher ◽  
Armin Bunde ◽  
Ulf Büntgen ◽  
Hans Joachim Schellnhuber

<p>Tree-ring chronologies are the main source for annually resolved and absolutely dated temperature reconstructions of the last millennia and thus for studying the intriguing problem of climate impacts. Here we focus on central Europe and compare the tree-ring based temperature reconstruction with reconstructions from harvest dates, long meteorological measurements, and historical model data. We find that all data are long term persistent, but in the tree-ring based reconstruction the strength of the persistence quantified by the Hurst exponent is remarkably larger (h = 1.02) than in the other data (h = 0.52 − 0.69), indicating an unrealistic exaggeration of the historical temperature variations. We show how to correct the tree-ring based reconstruction by a mathematical transformation that adjusts the persistence and leads to reduced amplitudes of the warm and cold periods. The new transformed record agrees well with both the observational data and the harvest dates-based reconstructions and allows more realistic studies of climate impacts. It confirms that the present warming is unprecedented.</p>


Sign in / Sign up

Export Citation Format

Share Document