scholarly journals Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification

Author(s):  
Wenfeng Liu ◽  
Hong Yang ◽  
Matti Kummu ◽  
Junguo Liu ◽  
Philippe Ciais

<p>Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We simulated baseline conditions for the year 2000 and explored the impacts of an agricultural intensification scenario, in which low-input countries increase N and irrigation inputs to a greater extent than high-input countries. We combined a crop model with the Global Trade Analysis Project model. Results show that food exports generally occurred from regions with lower water and N use intensities, defined here as water and N uses in relation to crop yields, to regions with higher resources use intensities. Globally, food trade thus conserved a large amount of water resources and N applications, and also substantially reduced N losses. The trade-related conservation in blue water use reached 85 km<sup>3</sup> y<sup>−1</sup>, accounting for more than half of total blue water use for producing the three crops. Food exported from the USA contributed the largest proportion of global water and N conservation as well as N loss reduction, but also led to substantial export-associated N losses in the country itself. Under the intensification scenario, the converging water and N use intensities across countries result in a more balanced world; crop trade will generally decrease, and global water resources conservation and N pollution reduction associated with the trade will reduce accordingly. The study provides useful information to understand the implications of agricultural intensification for international crop trade, crop water use and N pollution patterns in the world.</p>

2020 ◽  
Vol 737 ◽  
pp. 139651 ◽  
Author(s):  
Chuxiong Deng ◽  
Guangjie Zhang ◽  
Zhongwu Li ◽  
Ke Li

2021 ◽  
Author(s):  
Elena De Petrillo ◽  
Marta Tuninetti ◽  
Francesco Laio

<p>Through the international trade of agricultural goods, water resources that are physically used in the country of production are virtually transferred to the country of consumption. Food trade leads to a global redistribution of freshwater resources, thus shaping distant interdependencies among countries. Recent studies have shown how agricultural trade drives an outsourcing of environmental impacts pertaining to depletion and pollution of freshwater resources, and eutrophication of river bodies in distant producer countries. What is less clear is how the final consumer – being an individual, a company, or a community- impacts the water resources of producer countries at a subnational scale. Indeed, the variability of sub-national water footprint (WF in m<sup>3</sup>/tonne) due to climate, soil properties, irrigation practices, and fertilizer inputs is generally lost in trade analyses, as most trade data are only available at the country scale. The latest version of the Spatially Explicit Information on Production to Consumption Systems model  (SEI-PCS) by Trase provides detailed data on single trade flows (in tonne) along the crop supply chain: from local municipalities- to exporter companies- to importer companies – to the final consumer countries. These data allow us to capitalize on the high-resolution data of agricultural WF available in the literature, in order to quantify the sub-national virtual water flows behind food trade. As a first step, we assess the detailed soybean trade between Brazil and Italy. This assessment is relevant for water management because the global soybean flow reaching Italy may be traced back to 374 municipalities with heterogeneous agricultural practises and water use efficiency. Results show that the largest flow of virtual water from a Brazilian municipality to Italy -3.52e+07 m<sup>3</sup> (3% of the total export flow)- comes from Sorriso in the State of Mato Grosso. Conversely, the highest flow of blue water -1.56e+05 m<sup>3</sup>- comes from Jaguarão, in the State of Rio Grande do Sul, located in the Brazilian Pampa. Further, the analysis at the company scale reveals that as many as 37 exporting companies can be identified exchanging to Italy;  Bianchini S.A is the largest virtual water trader (1.88 e+08 m<sup>3</sup> of green water and 3,92 e+06 m<sup>3</sup> of blue water), followed by COFCO (1,06 e+08 m<sup>3</sup> of green water and 6.62 m<sup>3</sup> of blue water)  and Cargill ( 6.96 e+07 m<sup>3</sup> of green water and 2.80 e+02 m<sup>3</sup> of blue water). By building the bipartite network of importing companies and municipalities originating the fluxes we are able to efficiently disaggregate the supply chains , providing novel tools to build sustainable water management strategies.</p>


2006 ◽  
Vol 10 (3) ◽  
pp. 455-468 ◽  
Author(s):  
A. K. Chapagain ◽  
A. Y. Hoekstra ◽  
H. H. G. Savenije

Abstract. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.


Author(s):  
Syarifah Nabilah Syed Tahatahir ◽  
Mohamad Sofian Abu Talip ◽  
Mahazani Mohamad ◽  
Zati Hakim Azizul Hasan ◽  
Zeeda Fatimah Mohamad ◽  
...  

2019 ◽  
Vol 270 ◽  
pp. 04002
Author(s):  
Faisal ◽  
Evi Gravitiani ◽  
Suryanto ◽  
Mugi Raharjo

This study aims to: (1) determine the conservation of water resources willingness to pay (WTP) of the community, (2) determine the determinants that significantly affect the value of PAPs for additional benefits due to increase management of water resources conservation, and (3) determine whether reforestation environment is a type of conservation that community desires. Respondents from this study are Surakarta citizens, precisely in the southern region of Surakarta, Laweyan District, Central Java. They are customers of Surakarta Municipal Water Supply Company, especially the water distribution of the Cokro Tulung spring. This study uses linear analysis and Contingent Valuation Method (CVM). The interviews result with 106 respondents revealed that: (1) the average value of WTP in R2 is Rp 1,872,-, the average value of WTP in R3 is Rp 3,238,-, the average value of WTP in R4 is Rp 2,769,-, and the average value of WTP in trade group 1 is Rp 3,846,-, (2) education variables and perception variables on the importance of conservation have a significant effect on WTP of conservation of water resources, and (3) survey results show that there are 73.6% of respondents intend to do greening around Cokro Tulung spring.


Sign in / Sign up

Export Citation Format

Share Document