Earthquake-earthquake triggering in natural swarms and fluid-induced seismicity

Author(s):  
Kamran Karimi ◽  
Joern Davidsen

<p>Aftershock cascades and aftershock zones play an important role in forecasting seismic activity in both natural and human-made situations. While their behavior including the spatial aftershock zone scaling has been the focus of many studies in tectonic settings finding, for example, long-range earthquake-earthquake triggering in the near-field, this is not the case in situations where the seismic activity is primarily driven by fluids and the diffusion of excessive pore pressure. Here, we probe three different seismic settings that are believed to be influenced by fluid diffusion. The natural swarm in i) the Long Valley Caldera and the suspected swarms in ii) the Yuha Desert, both located in California, and associated earthquake-earthquake triggering behavior are compared against induced seismicity related to large scale wastewater disposal in iii) Oklahoma and southern Kansas. All settings exhibit a significant amount of event-event triggering highlighting the importance of secondary processes for the overall seismicity. We find an almost identical temporal event-event triggering behavior including the Omori-Utsu relation and the associated productivity relation. In terms of the spatial triggering density, both cases i) and iii) show a rapid decay beyond their rupture length. This proves that narrow spatial “aftershock” zones are not specific to induced seismicity but also occur in natural settings. Typical of most tectonic settings, a relatively long-range behavior is observed in case ii) suggesting that fluid migration might not be the dominant driving mechanism of the seismic activity and/or that the underlying structure of the fault network may control the secondary earthquake-earthquake triggering and its spatial evolution.</p>

2021 ◽  
Author(s):  
Marcello Chiodi ◽  
Orietta Nicolis ◽  
Giada Adelfio ◽  
Nicoletta D'angelo ◽  
Alex Gonzàlez

<p>Chilean seismic activity is among the strongest ones in the world. As already shown in previous papers, seismic activity can be usefully described by a space-time branching process, like the ETAS (Epidemic Type Aftershock Sequences) model, which is a semiparametric model with a large time scale component for the background seismicity and a small time scale component for the induced seismicity. The large-scale component intensity function  is usually estimated by  nonparametric techniques, specifically in our paper we used the Forward Likelihood Predictive approach (FLP); the induced seismicity is modelled with a parametric space-time function. In classical ETAS models the expected number of induced events depends only on the magnitude of the main event. From a statistical point of view, forecast of induced seismicity can be performed in the days following a big event; of course the estimation of this component is very important to forecast the evolution, in space and time domain, of a seismic sequence. Together with magnitude, to explain the expected number of induced events we also used other covariates. According to this formulation, the expected number of events induced by event E<sub>i </sub>is a function of a linear predictor η<sub>i</sub>=<strong>x<sub>i</sub></strong><strong>β, </strong>where <strong>x<sub>i </sub></strong>is the vector of covariates observed for the i-th event (the first is usually the magnitude m<sub>i</sub>), and <strong>β</strong> is a vector of parameters to be estimated together with the other parametric and nonparametric components of the ETAS model. We obtained some interesting result using some covariates related to the depth of events and to some GPS measurement, corresponding to earth movement observed before main events. We find that some of these models can improve the description and the forecasting of the induced seismicity in Chile, after a subdivision of the country in different spatial regions. We used open-source software (R package etasFLP) to perform the semiparametric estimation of the ETAS model with covariates.</p>


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


2021 ◽  
pp. 115738
Author(s):  
KyoHoon Jin ◽  
JeongA Wi ◽  
EunJu Lee ◽  
ShinJin Kang ◽  
SooKyun Kim ◽  
...  

1987 ◽  
Vol 112 (2) ◽  
pp. 257-279
Author(s):  
Carolyn Baxendale

It is clear that all the experience I had gained in writing the first four symphonies completely let me down in this one- for a completely new style demanded a new technique.Twenty-Five years ago a prominent Mahler enthusiast could describe the finale of Mahler's Fifth Symphony as ‘a windy, uninspired stretch of note-spinning, literally scraping the barrel in search of music’. Few people nowadays would subscribe to this view: indeed the upsurge of interest in the work of other ‘late Romantic’ composers has perhaps served to sharpen our admiration for Mahler's exceptional powers of invention and his no less extraordinary mastery of large-scale form. Yet we are not really any closer to explaining just how such extended works are held together and given shape, particularly in the absence of specific extra-musical concepts such as those of the ‘Wunderhorn’ symphonies.


2017 ◽  
Vol 29 (46) ◽  
pp. 1703143 ◽  
Author(s):  
Jiangang Feng ◽  
Qian Song ◽  
Bo Zhang ◽  
Yuchen Wu ◽  
Tie Wang ◽  
...  

2021 ◽  
Author(s):  
Dmitry Kostylev ◽  
Natalya Boginskaya ◽  
Alexander Zakupin

Abstract Induced seismicity is an increase in seismic activity caused by the human engineering. An example of such activity is the mineral exploration, large water reservoirs construction, exploitation of underground oil and gas storages, etc. The authors studied the seismicity in the Uglegorsky district of Sakhalin region, where the Solntsevskoye brown coal field is located, which is the most promising in the island. Its area is over 100 sq. km, and productive strata of the Verkhneduiskaya formation with a thickness of up to 600 m contains 12 coal seams, 8 of which are working. Active mining of brown coal is carried out at the Solntsevsky coal mine, and blasting operations are performed on a large scale, that, as a result, does not exclude the relation of the seismic process to technogenic seismicity. The earthquake recurrence curves for two decades beginning from 2000 to the present were constructed in the work to compare the characteristics of the seismic regime in the studied area. The difference in the slope angle of recurrence graph during the period of 2011-2020 (the period of the most active development of the Solntsevsky coal mine) from the previous decade is quite significant. The maps of spatiotemporal distribution of seismic events epicenters in the vicinity of Solntsevsky coal mine are constructed. The contraction of zones of seismic events concentration to the mining areas, first of all to the Solntsevsky coal mine, have been found. Such a combination allows us to talk about an increase in seismicity of the region during the last years and change in its character from the natural to a mixed natural and technogenic. The focal mechanisms of the largest earthquakes occurred in the Uglegorsky district have been constructed in order to prove the change in seismicity character and reasons for the earthquake occurrence in the studied area. The mechanisms of seismic events of 2020 are classified as strike-slip faults, that is not character for the most earthquakes on the territory of Sakhalin Island. The authors made an attempt to determine the regularities of the parameters of the produced blasts and earthquakes through dynamic parameters of the seismic events foci by means of studying the frequency content of earthquakes and blasts in order to determine a corner frequency from the focal velocity spectrum.


2020 ◽  
Author(s):  
Zhanjie Qin ◽  
Chunan Tang ◽  
Xiying Zhang ◽  
Tiantian Chen ◽  
Xiangjun Liu ◽  
...  

Abstract Large evaporite provinces (LEPs) represent prodigious volumes of evaporites widely developed from the Sinian to Neogene. The reasons why they often quickly develop on a large scale with large areas and thicknesses remain enigmatic. Possible causes range from warming from above to heating from below. The fact that the salt deposits in most salt-bearing basins occur mainly in the Sinian-Cambrian, Permian-Triassic, Jurassic-Cretaceous, and Miocene intervals favours a dominantly tectonic origin rather than a solar driving mechanism. Here, we analysed the spatio-temporal distribution of evaporites based on 138 evaporitic basins and found that throughout the Phanerozoiceon, LEPs occurred across the Earth’s surface in most salt-bearing basins, especially in areas with an evolutionary history of strong tectonic activity. The masses of evaporites, rates of evaporite formation, tectonic movements, and large igneous provinces (LIPs) synergistically developed in the Sinian-Cambrian, Permian, Jurassic-Cretaceous, and Miocene intervals, which are considered to be four of the warmest times since the Sinian. We realize that salt accumulation can proceed without solar energy and can generally be linked to geothermal changes in tectonically active zones. When climatic factors are involved, they may be manifestations of the thermal influence of the crust on the surface.


Sign in / Sign up

Export Citation Format

Share Document