Diversity and strength of ice-related dimethyl sulfide sources in the Arctic

Author(s):  
Maurice Levasseur ◽  
Martine Lizotte ◽  
Virginie Galindo ◽  
Margaux Gourdal ◽  
Michel Gosselin

<p>Biogenic sources of sulfur are important precursors of aerosols in the Arctic during the summer months. Recent studies show that peaks in ultrafine particle formation events often coincide with hotspots of dimethyl sulfide (DMS) emissions from the marginal ice zone. During the last 10 years, we explored the diversity of DMS sources associated with the ice and at the marginal ice zone in the Canadian Arctic, and assessed how the projected changes in sea ice extent, thickness, and other properties could strengthen or weaken these emissions. Results from four Arctic expeditions presenting DMS concentrations and dynamics in snow, sea ice, melt ponds, under-ice water, and at the ice edge will be shown and discussed in the context of ongoing and future changes in the cryosphere. The analysis of the pooled dataset points toward an increase in DMS emissions in a warmer Arctic with a potential cooling feedback on climate.</p>

2018 ◽  
Vol 15 (10) ◽  
pp. 3169-3188 ◽  
Author(s):  
Margaux Gourdal ◽  
Martine Lizotte ◽  
Guillaume Massé ◽  
Michel Gosselin ◽  
Michel Poulin ◽  
...  

Abstract. Melt pond formation is a seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first-year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethyl sulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Canadian Arctic Archipelago. DMS concentrations were under the detection limit (< 0.01 nmol L−1) in freshwater melt ponds and increased linearly with salinity (rs = 0.84, p ≤ 0.05) from ∼ 3 up to ∼ 6 nmol L−1 (avg. 3.7 ± 1.6 nmol L−1) in brackish melt ponds. This relationship suggests that the intrusion of seawater in melt ponds is a key physical mechanism responsible for the presence of DMS. Experiments were conducted with water from three melt ponds incubated for 24 h with and without the addition of two stable isotope-labelled precursors of DMS (dimethylsulfoniopropionate), (D6-DMSP) and dimethylsulfoxide (13C-DMSO). Results show that de novo biological production of DMS can take place within brackish melt ponds through bacterial DMSP uptake and cleavage. Our data suggest that FYI melt ponds could represent a reservoir of DMS available for potential flux to the atmosphere. The importance of this ice-related source of DMS for the Arctic atmosphere is expected to increase as a response to the thinning of sea ice and the areal and temporal expansion of melt ponds on Arctic FYI.


2020 ◽  
Vol 14 (6) ◽  
pp. 1971-1984 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schröder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 % to 80 %, is also changing. Changes in the MIZ extent has implications for the level of atmospheric and ocean heat and gas exchange in the area of partially ice-covered ocean and for the extent of habitat for organisms that rely on the MIZ, from primary producers like sea ice algae to seals and birds. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent over the last 40 years from observations. Our results indicate that the constancy of the MIZ extent is the result of an observed increase in width of the MIZ being compensated for by a decrease in the perimeter of the MIZ as it moves further north. We present simulations from a coupled sea ice–ocean mixed layer model using a prognostic floe size distribution, which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the four satellite-derived sea ice concentration datasets used. We find a large and significant increase (>50 %) in the August and September MIZ fraction (MIZ extent divided by sea ice extent) for the Bootstrap and OSI-450 observational datasets, which can be attributed to the reduction in total sea ice extent. Given the results of this study, we suggest that references to “rapid changes” in the MIZ should remain cautious and provide a specific and clear definition of both the MIZ itself and also the property of the MIZ that is changing.


Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue ◽  
Kazutoshi Sato ◽  
...  

Abstract Surface ocean waves are one of the potential processes that influence on the Arctic sea-ice extent. A better understanding of the generation, propagation, and attenuation of ocean waves under the sea ice is necessary to discuss the future Arctic climate change. We deployed two drifting wave buoys in the marginal ice zone in the western Arctic. Since the surface wave observation in the marginal ice zone is rare, the obtained data are useful for validation of the numerical modeling of the surface waves under the sea ice. The first buoy was deployed in the pancake-ice covered area and the second one in the open ocean. The distance between the two buoys at the deployment was about 40km, and the second buoy was deployed approximately 5 hours after the first deployment. The comparison of the wave bulk statistic measured by the two buoys shows the wave transformation under the sea ice. In general, the significant wave height decreases, and the mean wave periods increase by the presence of the sea ice.


2019 ◽  
Vol 21 (10) ◽  
pp. 1642-1649 ◽  
Author(s):  
Keyhong Park ◽  
Intae Kim ◽  
Jung-Ok Choi ◽  
Youngju Lee ◽  
Jinyoung Jung ◽  
...  

Dimethyl sulfide (DMS) production in the northern Arctic Ocean has been considered to be minimal because of high sea ice concentration and extremely low productivity.


2016 ◽  
Author(s):  
S. Kern ◽  
A. Rösel ◽  
L. T. Pedersen ◽  
N. Ivanova ◽  
R. Saldo ◽  
...  

Abstract. The sea ice concentration (SIC) derived from satellite microwave brightness temperature (TB) data are known to be less accurate during summer melt conditions – in the Arctic Ocean primarily because of the impact of melt ponds on sea ice. Using data from June to August 2009, we investigate how TBs and SICs vary as a function of the ice surface fraction (ISF) computed from open water fraction and melt pond fraction both derived from satellite optical reflectance data. SIC is computed from TBs using a set of eight different retrieval algorithms and applying a consistent set of tie points. We find that TB values change during sea ice melt non-linearly and not monotonically as a function of ISF for ISF of 50 to 100 %. For derived parameters such as the polarization ratio at 19 GHz the change is monotonic but substantially smaller than theoretically expected. Changes in ice/snow radiometric properties during melt also contribute to the TB changes observed; these contributions are functions of frequency and polarization and have the potential to partly counter-balance the impact of changing ISF on the observed TBs. All investigated SIC retrieval algorithms overestimate ISF when using winter tie points. The overestimation varies among the algorithms as a function of ISF such that the SIC retrieval algorithms could be categorized into two different classes. These reveal a different degree of ISF overestimation at high ISF and an opposite development of ISF over-estimation as ISF decreases. For one class, correlations between SIC and ISF are ≥ 0.85 and the associated linear regression lines suggest an exploitable relationship between SIC and ISF if reliable summer sea ice tie points can be established. This study shows that melt ponds are interpreted as open water by the SIC algorithms, while the concentration of ice between the melt ponds is in general being overestimated. These two effects may cancel each other out and thus produce seemingly correct SIC for the wrong reasons. This cancelling effect will in general only be "correct" at one specific value of MPF. Based on our findings we recommend to not correct SIC algorithms for the impact of melt ponds as this seems to violate physical principles. Users should be aware that the SIC algorithms available at the moment retrieve a combined parameter presented by SIC in winter and ISF in summer.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Tingting Zhu ◽  
Gunnar Spreen ◽  
Christian Melsheimer ◽  
Marcus Huntemann ◽  
...  

Abstract. We provide a new sea ice and water classification product with high spatial and high temporal coverage using Sentinel-1 Synthetic Aperture Radar (SAR) data. The classification is applied in the Fram Strait region in the Arctic during melting seasons, when the contrast between backscatter intensities of different ice types observed by SAR is reduced due to the melted ice surface and wet snow on sea ice. The wet or melted snow strongly reduces the SAR penetration depth and thus suppresses the volume scattering contribution of sea ice. Furthermore, within the marginal sea ice zone (MIZ)ambiguities between ice and water can result from the effects of winds and ocean currents on the ocean SAR backscatter. On the other hand, under calm conditions the contrast between thin ice and flat open water can be reduced, and thusdecrease the separability of some ice. In summary, the melting season represents the most challenging time of the year forreliable ice-water classification from SAR data. We propose here a new approach to overcome these problems by using amixture statistical distribution based conditional random fields (MSTA-CRF) model. To obtain reliable ice-waterclassification whilst maintaining a fast computation time suitable for operational applications, the MSTA-CRF adopts a superpixel approach in the fully connected CRF model. The MSTA-CRF is a semantic model, which integrates statisticaldistributions (Gamma, Weibull, Alpha-Stable, etc.) to model the backscatters of ice and water and overcome the effects ofspeckle noise and wind-roughened water. Dual-polarization Extended Wide (EW) mode Sentinel-1A/1B SAR data with40 m spatial resolution is available several times per day within the Fram Strait region. Observations from June toSeptember during the six years 2015–2020 are collected and classified into ice and water categories. The classification performance of algorithm is evaluated using ice charts from the Ice Service at the Norwegian Meteorological Institute(MET Norway). The methods of training sample selection, and their application to processing large data volumes andautomatic classification of ice-water are discussed. In the experiment part, we demonstrate that the MSTA-CRF can providea good performance with about 90 % accuracy for ice-water classification, which is better than most of other state-of-theart algorithms. Compared with the 89 GHz microwave radiometer ASI sea ice concentration product, the sea ice extent in Fram Strait derived from MSTA-CRF algorithm is lower during melting seasons from 2015 to 2020, and the monthly Juneto September sea ice area does not change so much in 2015–2017 and 2019–2020, but it has a significant decrease in 2018.


2017 ◽  
Author(s):  
Margaux Gourdal ◽  
Martine Lizotte ◽  
Guillaume Massé ◽  
Michel Gosselin ◽  
Michael Scarratt ◽  
...  

Abstract. Melt pond formation is a natural seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea-ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethylsulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Eastern Canadian Arctic. DMS concentrations were under the detection limit (


2013 ◽  
Vol 13 (1) ◽  
pp. 177-199 ◽  
Author(s):  
A. Devasthale ◽  
T. Koenigk ◽  
J. Sedlar ◽  
E. J. Fetzer

Abstract. The record sea-ice minimum (SIM) extents observed during the summers of 2007 and 2012 in the Arctic are stark evidence of accelerated sea ice loss during the last decade. Improving our understanding of the Arctic atmosphere and accurate quantification of its characteristics becomes ever more crucial, not least to improve predictions of such extreme events in the future. In this context, the Atmospheric Infrared Sounder (AIRS) instrument onboard NASA's Aqua satellite provides crucial insights due to its ability to provide 3-D information on atmospheric thermodynamics. Here, we facilitate comparisons in the evolution of the thermodynamic state of the Arctic atmosphere during these two SIM events using a decade long AIRS observational record (2003–2012). It is shown that the meteorological conditions during 2012 were not extreme but three factors in preconditioning from winter through early summer probably played an important role in accelerating sea-ice melt. First, the marginal sea-ice zones along the central Eurasian and North Atlantic sectors remained warm throughout winter and early spring in 2012 preventing thicker ice build-up. Second, the circulation pattern favoured efficient sea-ice transport out of the Arctic in the Atlantic sector during late spring and early summer in 2012 compared to 2007. Third, additional warming over the Canadian Archipelago and southeast Beaufort Sea from May onward further contributed to accelerated sea-ice melt. All these factors may have lead already thin and declining sea-ice cover to pass below the previous sea-ice extent minimum of 2007. In sharp contrast to 2007, negative surface temperature anomalies and increased cloudiness were observed over the East Siberian and Chukchi Seas in the summer of 2012. The results suggest that satellite-based monitoring of atmospheric preconditioning could be a critical source of information in predicting extreme sea-ice melting events in the Arctic.


2014 ◽  
Vol 11 (5) ◽  
pp. 7485-7519 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond pCO2 is low (36 μatm). The percolation of this low pCO2 melt water into the sea ice matrix dilutes the brine resulting in a strong decrease of the in situ brine pCO2 (to 20 μatm). As melt ponds reach equilibrium with the atmosphere, their in situ pCO2 increase (up to 380 μatm) and the percolation of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2016 ◽  
Vol 29 (3) ◽  
pp. 1143-1159 ◽  
Author(s):  
Marie-Luise Kapsch ◽  
Rune Grand Graversen ◽  
Michael Tjernström ◽  
Richard Bintanja

Abstract The Arctic summer sea ice has diminished fast in recent decades. A strong year-to-year variability on top of this trend indicates that sea ice is sensitive to short-term climate fluctuations. Previous studies show that anomalous atmospheric conditions over the Arctic during spring and summer affect ice melt and the September sea ice extent (SIE). These conditions are characterized by clouds, humidity, and heat anomalies that all affect downwelling shortwave (SWD) and longwave (LWD) radiation to the surface. In general, positive LWD anomalies are associated with cloudy and humid conditions, whereas positive anomalies of SWD appear under clear-sky conditions. Here the effect of realistic anomalies of LWD and SWD on summer sea ice is investigated by performing experiments with the Community Earth System Model. The SWD and LWD anomalies are studied separately and in combination for different seasons. It is found that positive LWD anomalies in spring and early summer have significant impact on the September SIE, whereas winter anomalies show only little effect. Positive anomalies in spring and early summer initiate an earlier melt onset, hereby triggering several feedback mechanisms that amplify melt during the succeeding months. Realistic positive SWD anomalies appear only important if they occur after the melt has started and the albedo is significantly reduced relative to winter conditions. Simulations where both positive LWD and negative SWD anomalies are implemented simultaneously, mimicking cloudy conditions, reveal that clouds during spring have a significant impact on summer sea ice while summer clouds have almost no effect.


Sign in / Sign up

Export Citation Format

Share Document