OClO as observed by TROPOMI on Sentinel 5P

Author(s):  
Janis Pukite ◽  
Christian Borger ◽  
Steffen Dörner ◽  
Thomas Wagner

<p>The TROPOspheric Monitoring Instrument (TROPOMI) is an UV-VIS-NIR-SWIR instrument on board of Sentinel-5P satellite developed for monitoring the Earth’s atmosphere. It was launched on 13 October 2017 in a near polar orbit. It measures spectrally resolved earthshine radiances at an unprecedented spatial resolution of around 3.5x7.2 km<sup>2</sup> (3.5x5.6 km<sup>2 </sup>starting from 6 Aug 2019) (near nadir) with a total swath width of ~2600 km on the Earth's surface providing daily global coverage. From the measured spectra high resolved trace gas distributions can be retrieved by means of differential optical absorption spectroscopy (DOAS).</p><p>Chlorine dioxide (OClO) is a by-product of the ozone depleting halogen chemistry in the stratosphere. Although being rapidly photolysed at low solar zenith angles (SZAs) it plays an important role as an indicator of the chlorine activation in polar regions during polar winter and spring at twilight conditions because of the nearly linear relation of its formation to chlorine oxide (ClO).</p><p>Here we present a new DOAS retrieval algorithm of the slant column densities (SCDs) of chlorine dioxide (OClO) and correlate this TROPOMI OClO signal with meteorological data for both Antarctic and Arctic regions.</p>

2021 ◽  
Author(s):  
Janis Pukite ◽  
Christian Borger ◽  
Steffen Dörner ◽  
Myojeong Gu

<p>Chlorine dioxide (OClO) is a by-product of the ozone depleting halogen chemistry in the stratosphere. Although being rapidly photolysed at low solar zenith angles (SZAs) it plays an important role as an indicator of the chlorine activation in polar regions during polar winter and spring at twilight conditions because of the nearly linear relation of its formation to chlorine oxide (ClO).</p><p>The TROPOspheric Monitoring Instrument (TROPOMI) is an UV-VIS-NIR-SWIR instrument on board the Sentinel-5P satellite developed for monitoring the composition of the Earth’s atmosphere. It was launched on 13 October 2017 in a near polar orbit. It measures spectrally resolved earthshine radiances at an unprecedented spatial resolution of around 3.5x7.2 km<sup>2</sup> (3.5x5.6 km<sup>2 </sup>starting from 6 Aug 2019) (near nadir) with a total swath width of ~2600 km on the Earth's surface providing daily global coverage and even higher temporal coverage in polar regions. From the measured spectra high resolved trace gas distributions can be retrieved by means of differential optical absorption spectroscopy (DOAS).</p><p>Here we present retrieved time series of OClO slant column densities (SCDs) for the period 2017 - 2020, compare them with ground based zenith sky measurements and correlate them with meteorological data for both Antarctic and Arctic regions.</p>


2021 ◽  
Author(s):  
Jānis Puķīte ◽  
Christian Borger ◽  
Steffen Dörner ◽  
Myojeong Gu ◽  
Udo Frieß ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) is a UV-VIS-NIR-SWIR instrument on board of Sentinel-5P satellite developed for monitoring the Earth’s atmosphere. It was launched on 13 October 2017 in a near polar orbit. It measures spectrally resolved earthshine radiances at an unprecedented spatial resolution of around 3.5 x 7.2 km² (3.5 x 5.6 km² starting from 6 Aug 2019) (near nadir) with a total swath width of ~ 2600 km on the Earth's surface providing daily global coverage. From the measured spectra high resolved trace gas distributions can be retrieved by means of differential optical absorption spectroscopy (DOAS). Chlorine dioxide (OClO) is a by-product of the ozone depleting halogen chemistry in the stratosphere. Although being rapidly photolysed at low solar zenith angles (SZAs) it plays an important role as an indicator of the chlorine activation in polar regions during polar winter and spring at twilight conditions because of the nearly linear dependence of its formation to chlorine oxide (ClO). Here we present a new retrieval algorithm of the slant column densities (SCDs) of chlorine dioxide (OClO) by DOAS. To achieve a substantially improved accuracy, which is especially important for OClO observations, accounting for absorber and pseudo absorber structures in optical depth even of the order of 10−4 is important. Therefore in comparison to existing retrievals, we include several additional fit parameters accounting for spectral effects like the temperature dependency of the Ring effect and Ring absorption effects, higher order term for the OClO SCD dependency on wavelength and account for the BrO absorption. We investigate the performance of different retrieval settings by an error analysis with respect to random variations, large scale systematic variations as function of solar zenith angle and also more localised systematic variations by a novel application of an autocorrelation analysis. The retrieved TROPOMI OClO SCDs show a very good agreement with ground based zenith sky measurements and are correlated well with preliminary data of the opeartional TROPOMI OClO retrieval algorithm currently being developed as part of ESA's S5p+I project.


2021 ◽  
Author(s):  
Jānis Puķīte ◽  
Christian Borger ◽  
Steffen Dörner ◽  
Myojeong Gu ◽  
Thomas Wagner

Abstract. Chlorine dioxide (OClO) is a by-product of the ozone depleting halogen chemistry in the stratosphere. Although being rapidly photolysed at low solar zenith angles (SZAs) it plays an important role as an indicator of the chlorine activation in polar regions during polar winter and spring at twilight conditions because of the nearly linear dependence of its formation to chlorine oxide (ClO). Here we compare slant column densities (SCDs) of chlorine dioxide (OClO) retrieved by means of differential optical absorption spectroscopy (DOAS) from spectra measured by the TROPOspheric Monitoring Instrument (TROPOMI) with meteorological data for both Antarctic and Arctic regions for the first three winters in each of the hemispheres (November 2017–October 2020). TROPOMI, a UV-VIS-NIR-SWIR instrument on board of the Sentinel-5P satellite monitors the Earth’s atmosphere in a near polar orbit at an unprecedented spatial resolution and signal to noise ratio and provides daily global coverage at the equator and thus even more frequent observations at polar regions. The observed OClO SCDs are generally well correlated with the meteorological conditions in the polar winter stratosphere: e.g. the chlorine activation signal appears as a sharp gradient in the time series of the OClO SCDs once the temperature drops to values well below the Nitric Acid Trihydrate (NAT) existence temperature TNAT. Also a relation of enhanced OClO values at lee sides of mountains can be observed at the beginning of the winters indicating a possible effect of occurring lee waves on chlorine activation. The dataset is also compared with CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) polar stratospheric cloud (PSC) observations. In general, OClO SCDs coincide well with CALIOP measurements for which PSCs are detected. Very high OClO levels are observed for the northern hemispheric winter 2019/2020 with an extraordinarly long period with a stable polar vortex being even close to the values found for Southern Hemispheric winters. Also the extraordinary winter in 2019 in the Southern Hemisphere with a minor sudden stratospheric warming at the beginning of September was observed. In this winter similar OClO values were measured in comparison to the previous (usual) winter till that event but with a 1–2 week earlier OClO deactivation.


2022 ◽  
Vol 22 (1) ◽  
pp. 245-272
Author(s):  
Jānis Puķīte ◽  
Christian Borger ◽  
Steffen Dörner ◽  
Myojeong Gu ◽  
Thomas Wagner

Abstract. Chlorine dioxide (OClO) is a by-product of the ozone-depleting halogen chemistry in the stratosphere. Although it is rapidly photolysed at low solar zenith angles (SZAs), it plays an important role as an indicator of the chlorine activation in polar regions during polar winter and spring at twilight conditions because of the nearly linear dependence of its formation on chlorine oxide (ClO). Here, we compare slant column densities (SCDs) of chlorine dioxide (OClO) retrieved by means of differential optical absorption spectroscopy (DOAS) from spectra measured by the TROPOspheric Monitoring Instrument (TROPOMI) with meteorological data for both Antarctic and Arctic regions for the first three winters in each of the hemispheres (November 2017–October 2020). TROPOMI, a UV–Vis–NIR–SWIR instrument on board of the Sentinel-5P satellite, monitors the Earth's atmosphere in a near-polar orbit at an unprecedented spatial resolution and signal-to-noise ratio and provides daily global coverage at the Equator and thus even more frequent observations at polar regions. The observed OClO SCDs are generally well correlated with the meteorological conditions in the polar winter stratosphere; for example, the chlorine activation signal appears as a sharp gradient in the time series of the OClO SCDs once the temperature drops to values well below the nitric acid trihydrate (NAT) existence temperature (TNAT). Also a relation of enhanced OClO values at lee sides of mountains can be observed at the beginning of the winters, indicating a possible effect of lee waves on chlorine activation. The dataset is also compared with CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) polar stratospheric cloud (PSC) observations. In general, OClO SCDs coincide well with CALIOP measurements for which PSCs are detected. Very high OClO levels are observed for the northern hemispheric winter 2019/20, with an extraordinarily long period with a stable polar vortex being even close to the values found for southern hemispheric winters. An extraordinary winter in the Southern Hemisphere was also observed in 2019, with a minor sudden stratospheric warming at the beginning of September. In this winter, similar OClO values were measured in comparison to the previous (usual) winter till that event but with a OClO deactivation that was 1–2 weeks earlier.


2021 ◽  
Author(s):  
Simon Warnach ◽  
Holger Sihler ◽  
Christian Borger ◽  
Nicole Bobrowski ◽  
Stefan Schmitt ◽  
...  

<p>Bromine monoxide (BrO) is a halogen radical capable of influencing atmospheric chemical processes, in particular the abundance of ozone, e. g. in the troposphere of polar regions, the stratosphere as well as in volcanic plumes. Furthermore, the molar bromine to sulphur ratio in volcanic gas emissions is a proxy for the magmatic composition of a volcano and potentially an eruption forecast parameter.</p><p>The high spatial resolution of the S5-P/TROPOMI instrument (up to 3.5x5.5km<sup>2</sup>) and its daily global coverage offer the potential to detect BrO even during minor eruptions and also to determine BrO/SO<sub>2</sub> ratios during continuous passive degassing.</p><p>Here, we present a global overview of BrO/SO<sub>2</sub> molar ratios in volcanic plumes derived from a systematic long-term investigation of three years of TROPOMI data.</p><p>We retrieved column densities of BrO and SO<sub>2</sub> using Differential Optical Absorption Spectroscopy (DOAS) and calculated mean BrOSO<sub>2</sub> molar ratios for each volcano. As expected, the calculated BrO/SO<sub>2</sub> molar ratios differ strongly between different volcanoes ranging from several 10<sup>-5</sup> up to several 10<sup>-4</sup>. In our study of three years of S5P/TROPOMI data we successfully recorded elevated BrO column densities for more than 100 volcanic events and were able to derive meaningful (coefficient of determination, R<sup>2</sup> exceeding 0.5) BrO/SO<sub>2</sub> ratios for multiple volcanoes.</p>


2019 ◽  
Vol 12 (12) ◽  
pp. 6771-6802 ◽  
Author(s):  
Oliver Schneising ◽  
Michael Buchwitz ◽  
Maximilian Reuter ◽  
Heinrich Bovensmann ◽  
John P. Burrows ◽  
...  

Abstract. Carbon monoxide (CO) is an important atmospheric constituent affecting air quality, and methane (CH4) is the second most important greenhouse gas contributing to human-induced climate change. Detailed and continuous observations of these gases are necessary to better assess their impact on climate and atmospheric pollution. While surface and airborne measurements are able to accurately determine atmospheric abundances on local scales, global coverage can only be achieved using satellite instruments. The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite, which was successfully launched in October 2017, is a spaceborne nadir-viewing imaging spectrometer measuring solar radiation reflected by the Earth in a push-broom configuration. It has a wide swath on the terrestrial surface and covers wavelength bands between the ultraviolet (UV) and the shortwave infrared (SWIR), combining a high spatial resolution with daily global coverage. These characteristics enable the determination of both gases with an unprecedented level of detail on a global scale, introducing new areas of application. Abundances of the atmospheric column-averaged dry air mole fractions XCO and XCH4 are simultaneously retrieved from TROPOMI's radiance measurements in the 2.3 µm spectral range of the SWIR part of the solar spectrum using the scientific retrieval algorithm Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS). This algorithm is intended to be used with the operational algorithms for mutual verification and to provide new geophysical insights. We introduce the algorithm in detail, including expected error characteristics based on synthetic data, a machine-learning-based quality filter, and a shallow learning calibration procedure applied in the post-processing of the XCH4 data. The quality of the results based on real TROPOMI data is assessed by validation with ground-based Fourier transform spectrometer (FTS) measurements providing realistic error estimates of the satellite data: the XCO data set is characterised by a random error of 5.1 ppb (5.8 %) and a systematic error of 1.9 ppb (2.1 %); the XCH4 data set exhibits a random error of 14.0 ppb (0.8 %) and a systematic error of 4.3 ppb (0.2 %). The natural XCO and XCH4 variations are well-captured by the satellite retrievals, which is demonstrated by a high correlation with the validation data (R=0.97 for XCO and R=0.91 for XCH4 based on daily averages). We also present selected results from the mission start until the end of 2018, including a first comparison to the operational products and examples of the detection of emission sources in a single satellite overpass, such as CO emissions from the steel industry and CH4 emissions from the energy sector, which potentially allows for the advance of emission monitoring and air quality assessments to an entirely new level.


2020 ◽  
Author(s):  
Moritz Schöne ◽  
Holger Sihler ◽  
Simon Warnach ◽  
Christian Borger ◽  
Steffen Beirle ◽  
...  

<p>Halogen radicals can drastically alter the atmospheric chemistry. In the polar regions, this is made evident, among others, by the almost complete destruction of boundary layer ozone during polar springs. These recurrent episodes of catalytic ozone depletion, referred to as Ozone Depletion Events (ODE), are caused by enhanced concentrations of reactive bromine compounds. The proposed mechanism by which these are released into the atmosphere is called bromine explosions -  reactive bromine is formed autocatalytically from the condensed phase. Enhanced bromine oxide concentrations have been observed by ground-based measurements as well as from aircraft and satellite, where the large spatial coverage allows to study the spatial extent of the phenomenon and its correlation with meteorological data as well as climate change.</p><p>The spatial resolution of S-5P/TROPOMI of 3,5 km x 7 km allows improved localization of these events and to resolve finer structures compared to previous satellite measurements. Together with the better than daily coverage over the polar regions, this allows investigations of the spatio-temporal variability of enhanced BrO levels and their relation to different possible bromine sources and release mechanisms.</p><p>We present tropospheric BrO column densities retrieved from TROPOMI data using Differential Optical Absorption Spectroscopy (DOAS). Building on methods from statistical data analysis and machine learning, we separate the tropospheric partial column from the total column using solely data (BrO, O3 and NO2) measured by satellite. The observations are discussed with regards to sea ice coverage and meteorological influences.</p>


2021 ◽  
Vol 14 (8) ◽  
pp. 5771-5789
Author(s):  
Andrea Orfanoz-Cheuquelaf ◽  
Alexei Rozanov ◽  
Mark Weber ◽  
Carlo Arosio ◽  
Annette Ladstätter-Weißenmayer ◽  
...  

Abstract. A scientific total ozone column product from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) observations and the retrieval algorithm are presented. The retrieval employs the weighting function fitting approach (WFFA), a modification of the weighting function differential optical absorption spectroscopy (WFDOAS) technique. The total ozone columns retrieved with WFFA are in very good agreement with other datasets. A mean difference of 0.3 % with respect to ground-based Brewer and Dobson measurements is observed. Seasonal and latitudinal variations are well represented and in agreement with other satellite datasets. The comparison of our product with the operational product of OMPS-NM indicates a mean bias of around zero. The comparison with the Tropospheric Monitoring Instrument products (S5P/TROPOMI) OFFL and WFDOAS shows a persistent negative bias of about −0.6 % for OFFL and −2.5 % for WFDOAS. Larger differences are only observed in the polar regions. This data product is intended to be used for trend analysis and the retrieval of tropospheric ozone combined with the OMPS limb profiler data.


2017 ◽  
Author(s):  
Johannes Lampel ◽  
Johannes Zielcke ◽  
Stefan Schmitt ◽  
Denis Pöhler ◽  
Udo Frieß ◽  
...  

Abstract. Retrieving the column of an absorbing trace gas from spectral data requires that all absorbers in the corresponding wavelength range are sufficiently well known. This is especially important for the retrieval of weak absorbers, whose absorptions are often in the 10-4 range. Previous publications on the absorptions of the oxygen dimer O2-O2 (or short: O4) list absorption peaks at 328 nm and 419 nm, for which no spectrally resolved literature cross-sections are available. As these absorptions potentially influence the spectral retrieval of various trace gases, such as HCHO, BrO, OClO and IO, their shape and magnitude needs to be quantified. We assume that the shape of the absorption peaks at 328 nm and 419 nm can be approximated by their respective neighboring absorption peaks. Using this approach we obtain estimates for the wavelength of the absorption and its magnitude. Using Longpath Differential Optical Absorption Spectroscopy (LP-DOAS) observations and Multi-Axis (MAX)-DOAS observations, we estimate the peak absorption cross-sections of O4 to be (1.7 ± 0.2) x 10-47 cm5 molec-2 and determine the wavelength of its maximum at 328.51 ± 0.15 nm. For the absorption at 419.0 ± 0.4 nm a peak O4 cross-section value is determined as (3.7 ± 2.7) x 10-48 cm5 molec-2.


2020 ◽  
Author(s):  
Stefan Schreier ◽  
Andreas Richter ◽  
Tim Bösch ◽  
Kezia Lange ◽  
Michael Revesz ◽  
...  

<p>Within the scope of the VINDOBONA (VIenna horizontal aNd vertical Distribution OBservations Of Nitrogen dioxide and Aerosols) project, spectral UV/vis measurements at selected viewing directions are performed with three MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instruments, which are located in the northeast, northwest, and south of the city center of Vienna, Austria. The selection of viewing directions of the three instruments was chosen in a way to provide data for the retrieval of horizontal and vertical trace gas and aerosol distributions, in particular over the urban core.</p><p>In the present work, the profile retrieval algorithm BOREAS (Bremen Optimal estimation REtrieval for Aerosols and trace gaseS) is used to retrieve aerosol and NO2 vertical profiles as well as accompanying parameters aerosol optical depth, tropospheric NO2 vertical columns (TVC NO2), and near-surface NO2 on days with cloudless conditions. The retrieval results are compared with co-located ceilometer, sun photometer, surface air quality, and TVC NO2 measurements, with the latter being obtained by applying the geometrical approximation and converting zenith-sky NO2 measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document