Spatial effects on extreme precipitation in the coastal areas of southeast China

Author(s):  
Weikang Qian ◽  
Xun Sun

<p>Extreme precipitation event, along with its secondary disasters, is one of the largest natural hazards leading to massive loss in human society. In the coastal areas of southeast china, tropical cyclones (TC) frequently visit the region with intensive precipitation in summer and autumn. Besides TC induced extreme precipitation, convectional precipitation is an alternative reason of extreme precipitation. This study investigated the spatial effects of the extreme precipitation during the raining season for both TC induced and non-TC induced extreme precipitation. The seasonal maximum daily precipitation data through 94 stations in southeast coastal areas of China from 1964 to 2013 were used. We developed a hierarchical Bayesian model with generalized extreme value distribution (GEV) to quantitatively assess the effects of spatial factors on the extreme precipitation. TC induced and non-TC induced extreme precipitation are modelled separately. It was found that the spatial factors that affect the TC induced and non-TC induced extreme precipitation are clearly different. For the TC induced extreme precipitation, the distance to the coastline has been found to be a significant spatial covariate that affects both the location and scale parameter of GEV across the whole areas, while spatial factors are diverse in different locations for non-TC induced extreme precipitation.</p>

2021 ◽  
Author(s):  
Weikang Qian ◽  
Xun Sun

<p>Extreme precipitation is considered to be one of the natural disasters with greatest impact on human society, leading to floods and debris flows. To better understand the spatio-temporal effects on extreme precipitation, and to predict the intensity of extreme precipitation ahead in different return periods, this study focus on quantifying both climate and spatial effects on the intensity of extreme precipitation in coastal areas of southeast China, considering different weather system. A hierarchical Bayesian model with generalized extreme value distribution (GEV) is applied to maximum daily precipitation through 94 stations in study area from 1964 to 2013 in JAS. Tropical cyclone (TC) and non-TC influenced extreme precipitation are analyzed separately. Climate and spatial effects are introduced through regression models associating parameter values in GEV with different covariates, such as climate indices and distance to coastline. It was observed that SST anomaly in North Pacific, SLP anomaly above North India Ocean are found to be the main climate indices that influence extreme precipitation in coastal areas of southeast China. Using SST, we can predict the intensity of extreme precipitation in different return period at 6-month lag. Extreme precipitation was found to decrease as distance to coastline increase. In addition, different performances of extreme precipitation along with distance to coastline were found among various subregions and weather systems.</p>


2015 ◽  
Vol 15 (10) ◽  
pp. 2347-2358 ◽  
Author(s):  
M. Maugeri ◽  
M. Brunetti ◽  
M. Garzoglio ◽  
C. Simolo

Abstract. Sicily, a major Mediterranean island, has experienced several exceptional precipitation episodes and floods during the last century, with serious damage to human life and the environment. Long-term, rational planning of urban development is indispensable to protect the population and to avoid huge economic losses in the future. This requires a thorough knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In this study, we perform a detailed investigation of observed 1 day precipitation extremes and their frequency distribution, based on a dense data set of high-quality, homogenized station records in 1921–2005. We estimate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and show the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events.


Author(s):  
Yong Yuan ◽  
Denghua Yan ◽  
Zhe Yuan ◽  
Jun Yin ◽  
Zhongnan Zhao

The Huang-huai-hai River Basin is one of the most economically developed areas, but is also heavily impacted by drought and flood disasters. Research on the precipitation feature of the Huang-huai-hai River Basin is of great importance to the further discussion of the cause of flood disaster. Based on the selected meteorological stations of the study area from 1961–2016, the inverse distance weighting method was used to get daily precipitation grid data. Interannual variation of precipitation intensity and cover area of different precipitation classes was analyzed. The generalized extreme-value distribution method was used to analyze the spatial distribution of extreme precipitation. The results show that: (1) decrease of accumulated precipitation in light precipitation year and moderate precipitation year might be the reason why the precipitation in the whole basin decreased, but the coefficient of variation (CV) of different classes of precipitation and precipitation days does not change significantly; (2) since the cover area of precipitation > 50 mm and precipitation intensity both decreased, the extreme precipitation of the whole basin may be decreasing; (3) extreme precipitation mainly occurred in the loess plateau in the northeast of Huang-huai-hai River Basin, Dabieshan in the middle of Huang-huai-hai River Basin and other areas.


Ecosphere ◽  
2015 ◽  
Vol 6 (10) ◽  
pp. art172 ◽  
Author(s):  
Amy L. Concilio ◽  
Janet S. Prevéy ◽  
Peter Omasta ◽  
James O'Connor ◽  
Jesse B. Nippert ◽  
...  

Perception ◽  
10.1068/p6165 ◽  
2009 ◽  
Vol 38 (5) ◽  
pp. 748-762 ◽  
Author(s):  
Marie-Ève Roussel ◽  
Simon Grondin ◽  
Peter Killeen

We examined the influence of spatial factors in temporal processing. Participants categorised as short or long empty intervals marked by two brief flashes delivered from locations differing in height and depth (experiment 1), or from two of three locations on a vertical plane (experiment 2). The perceived duration of intervals, as determined by the point of subjective equality, was affected by the height and depth of the signals (experiment 1). Experiment 2 showed that the point of fixation plays a critical role in perceived duration. The duration of an interval located in the upper visual field is perceived as longer when participants fixate the higher visual source and shorter when the fixation point is set in the middle; this latter result also generally applies when the fixation point is in the lower source. Finally, for the sensitivity level, there was a significant segment (upper versus lower) × direction (descending versus ascending) interaction in experiment 1; a similar interaction effect varied according to the fixation point in experiment 2. In experiment 2, the Weber fractions were around 0.22. Most results can be explained in terms of the need to shift attention from one visual source—for marking time intervals—to another.


Sign in / Sign up

Export Citation Format

Share Document