Spatial effects on extreme precipitation in the coastal areas of southeastern China during the raining season

Author(s):  
Weikang Qian ◽  
Xun Sun ◽  
Chao Li
2020 ◽  
Author(s):  
Weikang Qian ◽  
Xun Sun

<p>Extreme precipitation event, along with its secondary disasters, is one of the largest natural hazards leading to massive loss in human society. In the coastal areas of southeast china, tropical cyclones (TC) frequently visit the region with intensive precipitation in summer and autumn. Besides TC induced extreme precipitation, convectional precipitation is an alternative reason of extreme precipitation. This study investigated the spatial effects of the extreme precipitation during the raining season for both TC induced and non-TC induced extreme precipitation. The seasonal maximum daily precipitation data through 94 stations in southeast coastal areas of China from 1964 to 2013 were used. We developed a hierarchical Bayesian model with generalized extreme value distribution (GEV) to quantitatively assess the effects of spatial factors on the extreme precipitation. TC induced and non-TC induced extreme precipitation are modelled separately. It was found that the spatial factors that affect the TC induced and non-TC induced extreme precipitation are clearly different. For the TC induced extreme precipitation, the distance to the coastline has been found to be a significant spatial covariate that affects both the location and scale parameter of GEV across the whole areas, while spatial factors are diverse in different locations for non-TC induced extreme precipitation.</p>


2021 ◽  
Author(s):  
Weikang Qian ◽  
Xun Sun

<p>Extreme precipitation is considered to be one of the natural disasters with greatest impact on human society, leading to floods and debris flows. To better understand the spatio-temporal effects on extreme precipitation, and to predict the intensity of extreme precipitation ahead in different return periods, this study focus on quantifying both climate and spatial effects on the intensity of extreme precipitation in coastal areas of southeast China, considering different weather system. A hierarchical Bayesian model with generalized extreme value distribution (GEV) is applied to maximum daily precipitation through 94 stations in study area from 1964 to 2013 in JAS. Tropical cyclone (TC) and non-TC influenced extreme precipitation are analyzed separately. Climate and spatial effects are introduced through regression models associating parameter values in GEV with different covariates, such as climate indices and distance to coastline. It was observed that SST anomaly in North Pacific, SLP anomaly above North India Ocean are found to be the main climate indices that influence extreme precipitation in coastal areas of southeast China. Using SST, we can predict the intensity of extreme precipitation in different return period at 6-month lag. Extreme precipitation was found to decrease as distance to coastline increase. In addition, different performances of extreme precipitation along with distance to coastline were found among various subregions and weather systems.</p>


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1075 ◽  
Author(s):  
Dongqiang Chen ◽  
Hengpeng Li ◽  
Wangshou Zhang ◽  
Steven G. Pueppke ◽  
Jiaping Pang ◽  
...  

The Qiandao Lake Basin (QLB), which occupies low hilly terrain in the monsoon region of southeastern China, is facing serious environmental challenges due to human activities and climate change. Here, we investigated source attribution, transport processes, and the spatiotemporal dynamics of nitrogen (N) movement in the QLB using the Soil and Water Assessment Tool (SWAT), a physical-based model. The goal was to generate key localized vegetative parameters and agronomic variables to serve as credible information on N sources and as a reference for basin management. The simulation indicated that the basin’s annual average total nitrogen (TN) load between 2007 and 2016 was 11,474 tons. Steep slopes with low vegetation coverage significantly influenced the spatiotemporal distribution of N and its transport process. Monthly average TN loads peaked in June due to intensive fertilization of tea plantations and other agricultural areas and then dropped rapidly in July. Subsurface flow is the key transport pathway, with approximately 70% of N loads originating within Anhui Province, which occupies just 58% of the basin area. The TN yields of sub-basins vary considerably and have strong spatial effects on incremental loads entering the basin’ major stream, the Xin’anjiang River. The largest contributor to N loads was domestic sewage (21.8%), followed by livestock production (20.8%), cropland (18.6%), tea land (15.5%), forest land (10.9%), atmospheric deposition (5.6%), orchards (4.6%), industry (1.4%), and other land (0.8%). Our simulation underscores the urgency of increasing the efficiency of the wastewater treatment, conserving slope land, and optimizing agricultural management as components of a comprehensive policy to control N pollution in the basin.


2015 ◽  
Vol 28 (21) ◽  
pp. 8603-8619 ◽  
Author(s):  
Zhihong Jiang ◽  
Wei Li ◽  
Jianjun Xu ◽  
Laurent Li

Abstract Compared to precipitation extremes calculated from a high-resolution daily observational dataset in China during 1960–2005, simulations in 31 climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) have been quantitatively assessed using skill-score metrics. Four extreme precipitation indices, including the total precipitation (PRCPTOT), maximum consecutive dry days (CDD), precipitation intensity (SDII), and fraction of total rainfall from heavy events (R95T) are analyzed. Results show that CMIP5 models still have wet biases in western and northern China. Especially in western China, the models’ median relative error is about 120% for PRCPTOT; the 25th and 75th percentile errors are of 70% and 220%, respectively. However, there are dry biases in southeastern China, where the underestimation of PRCPTOT reach 200 mm. The performance of CMIP5 models is quite different between western and eastern China. The simulations are more reliable in the east than in the west in terms of spatial pattern and interannual variability. In the east, precipitation indices are more consistent with observations, and the spread among models is smaller. The multimodel ensemble constructed from a selection of the most skillful models shows improved behavior compared to the all-model ensemble. The wet bias in western and northern China and dry bias over southeastern China are all decreased. The median of errors for PRCPTOT has a decrease of 69% and 17% in the west and east, respectively. The good reproduction of the southwesterlies along the east coast of the Arabian Peninsula is revealed to be the main factor explaining the improvement of precipitation patterns and extreme events.


2022 ◽  
Vol 26 (1) ◽  
pp. 117-127
Author(s):  
Tao Xu ◽  
Hongxi Pang ◽  
Zhaojun Zhan ◽  
Wangbin Zhang ◽  
Huiwen Guo ◽  
...  

Abstract. In the East Asian monsoon region, winter extreme precipitation events occasionally occur and bring great social and economic losses. From December 2018 to February 2019, southeastern China experienced a record-breaking number of extreme precipitation events. In this study, we analyzed the variation in water vapor isotopes and their controlling factors during the extreme precipitation events in Nanjing, southeastern China. The results show that the variations in water vapor isotopes are closely linked to the change in moisture sources. Using a water vapor d-excess-weighted trajectory model, we identified the following five most important moisture source regions: South China, the East China Sea, the South China Sea, the Bay of Bengal, and continental regions (northwestern China and Mongolia). Moreover, the variations in water vapor d excess during a precipitation event reflect rapid shifts in the moisture source regions. These results indicate that rapid shifts among multiple moisture sources are important conditions for sustaining wintertime extreme precipitation events over extended periods.


Zootaxa ◽  
2019 ◽  
Vol 4613 (1) ◽  
pp. 172-180
Author(s):  
ZHI-TENG CHEN

The male, female, and nymph of the leuctrid Rhopalopsole hamata Yang & Yang, 1995, originally known from Zhejiang, an eastern coastal province of China, are redescribed and illustrated. This new material is from Jiangsu, an eastern-central coastal province of China. Brief biological data is also provided for this species. In addition, a species checklist of the Rhopalopsole dentata group from China is provided. The type localities of these group are mainly in the coastal areas of southeastern China. 


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 271 ◽  
Author(s):  
Yongdi Wang ◽  
Shuanggen Jin ◽  
Xinyu Sun ◽  
Fei Wang

Extreme precipitation has often occurred in Southeastern China, while the possible mechanism is not clear. In order to bridge the scale gap between large-scale circulation and extreme precipitation, in this paper, the k-means clustering technique—a common method of weather-type (WT) analysis—was applied to regional 850-hPa wind fields. The reasonable determination of k values can make the later WT analyses more reliable. Thus, the Davies–Bouldin (BD) criterion index is used in the clustering process, and the optimal value of the k was determined. Then, we obtain and analyze the frequency, persistence, and progression of WTs. The rule of transitions from one WT to another may help explain some of the physical processes in winter. We found a special evolutionary chain (WT3→WT1→WT2→WT5→WT3) that can be used to explain the cold wave weather process in winter. Different WTs in the evolutionary chain correspond well to different stages of the cold wave weather process (gestation (WT3), outbreak (WT1), eastward withdrawal (WT2), and extinction (WT5)). In addition, we found that there are obvious differences in precipitation between December and February. After reassembling five kinds of WTs, two modes are formed: dry WTs and wet WTs. Our research shows that the intraseasonal variation of precipitation can be attributed to the fluctuation between the wet and dry WTs, and the different phases of teleconnection can correspond well with it. For example, the relative frequencies of wet WTs are higher in February. These WTs correspond to the positive phase of the WP and ENSO, the negative phase of the EA and EU, and the strong MJO state of the second, third, and eighth phase. Our work has well established the relationship between synoptic scale and large-scale circulation, which provides a reference for climate model simulation and future climate prediction.


2018 ◽  
Vol 18 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Weiju Chen

Abstract The Xiantouling Culture featured sand dune sites and shell midden (kitchen midden) sites. Through an analysis of the faunal and floral remains and tools unearthed from these sites, with the relevant unearthed pottery wares and paleo-environmental research results taken into account, it can be evidenced that the subsistence types of these sites were mainly plant gathering supplemented by fishing and hunting, instead of relying on marine resources. The subsistence type of the sand dune sites was mainly plant gathering and occasionally rice gathering or farming; that of the earlier kitchen madden sites was gathering freshwater shells, and that of the later ones was more relying on marine resources. From the late phase of Xiantouling Culture, the archaeological cultures in the coastal areas of southeastern China began to utilize marine resources in a large scale.


Sign in / Sign up

Export Citation Format

Share Document