Characterising the bed of Rutford Ice Stream, West Antarctica, using reflection seismic profiles

Author(s):  
Alex Brisbourne ◽  
Andrew Smith ◽  
Tavi Murray ◽  
Rebecca Schlegel ◽  
Keith Nichols ◽  
...  

<p>Ice stream flow is predominantly controlled by sliding over the bed, deformation within the bed and deformation within the ice column. The significance of processes at the bed, now and in the future, remains uncertain due to a lack of knowledge of conditions at the ice stream bed. In the Austral summer of 2018/19, as part of the BEAMISH Project, three holes were drilled to the bed of Rutford Ice Stream to install instruments in the ice column and at the bed, and also sample the bed. Prior to drilling, three seismic profiles were acquired across the bed access sites. These data therefore provide a rare opportunity to compare in situ measurements of ice stream bed conditions with seismic reflection data. The seismic line acquisition was also repeated one year later to investigate any changes at the bed following the drilling and connection to the bed. We will use a combination of imaging, acoustic impedance calculation and wide-angle reflection amplitude variation to characterise the bed conditions using the seismic data.   </p>

2000 ◽  
Vol 6 (3) ◽  
pp. 271-277 ◽  
Author(s):  
G. S. Baker ◽  
D. W. Steeples ◽  
C. Schmeissner ◽  
K. T. Spikes

Abstract Ultrashallow seismic-reflection data were collected at a test site in Great Bend, Kansas. The purpose of the experiment was to image seasonal submeter-scale fluctuations in the water table over a period of one year to identify the factors important in monitoring the water table when using seismic-reflection techniques. The study indicates that detailed velocity information must be used when interpreting water-table levels. Using detailed velocity information as a control when depth-converting the seismic profiles yielded correct positioning of the water table within + or -12 cm at the test site.


2010 ◽  
Vol 47 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Jounada Oueity ◽  
Ron M. Clowes

Near-vertical incidence and refraction – wide-angle reflection seismic data, recorded as part of Lithoprobe studies in the Paleoproterozoic–Archean domains of Canada’s Northwest Territories, show remarkable reflections from within the upper mantle. A parallel pair of reflectors imaged by the near-vertical data can be traced from Moho levels (∼33 km) down to ∼70 km depth. In a previous study, the reflectors were interpreted as the top and bottom of an ∼1.8 Ga subducted oceanic crust beneath the Hottah terrane. Further inboard, where the seismic line changes its direction from east–west to nearly north–south, another pair of reflectors extends subhorizontally for about 100 km at ∼70 km depth before dipping downward. The subhorizontal reflectors were not correlated with the dipping slab; instead they were interpreted as a separate feature. However, they roughly coincide with a horizontal interface modeled from wide-angle data by an earlier study. Considering the crooked line acquisition geometry, we re-examined both near-vertical incidence and wide-angle reflection data using 2-dimensional (2-D) and 3-D forward and inverse modeling algorithms. Our results demonstrate that the subhorizontal reflectors are the continuation of the relict subducted slab, which now extends laterally for 300 km. Its base is the source of the wide-angle data. The apparent flattening for the near-vertical data is most likely an artifact of projecting a 3-D geometry onto a 2-D cross section. The shallowly subducted slab probably contributed to the thickening and stabilization of the subcrustal lithosphere below the Wopmay orogen.


1989 ◽  
Vol 26 (2) ◽  
pp. 305-321 ◽  
Author(s):  
François Marillier ◽  
Charlotte E. Keen ◽  
Glen S. Stockmal ◽  
Garry Quinlan ◽  
Harold Williams ◽  
...  

In 1986, 1181 km of marine seismic reflection data was collected to 18–20 s of two-way traveltime in the Gulf of St. Lawrence area. The seismic profiles sample all major surface tectono-stratigraphic zones of the Canadian Appalachians. They complement the 1984 deep reflection survey northeast of Newfoundland. Together, the seismic profiles reveal the regional three-dimensional geometry of the orogen.Three lower crustal blocks are distinguished on the seismic data. They are referred to as the Grenville, Central, and Avalon blocks, from west to east. The Grenville block is wedge shaped in section, and its subsurface edge follows the form of the Appalachian structural front. The Grenville block abuts the Central block at mid-crustal to mantle depths. The Avalon block meets the Central block at a steep junction that penetrates the entire crust.Consistent differences in the seismic character of the Moho help identify boundaries of the deep crustal blocks. The Moho signature varies from uniform over extended distances to irregular with abrupt depth changes. In places the Moho is offset by steep reflections that cut the lower crust and upper mantle. In other places, the change in Moho elevation is gradual, with lower crustal reflections following its form. In all three blocks the crust is generally highly reflective, with no distinction between a transparent upper crust and reflective lower crust.In general, Carboniferous and Mesozoic basins crossed by the seismic profiles overlie thinner crust. However, a deep Moho is found at some places beneath the Carboniferous Magdalen Basin.The Grenville block belongs to the Grenville Craton; the Humber Zone is thrust over its dipping southwestern edge. The Dunnage Zone is allochthonous above the opposing Grenville and Central blocks. The Gander Zone may be the surface expression of the Central block or may be allochthonous itself. There is a spatial analogy between the Avalon block and the Avalon Zone. Our profile across the Meguma Zone is too short to seismically distinguish this zone from the Avalon Zone.


2016 ◽  
Author(s):  
David K. Smythe

Abstract. North American shale basins differ from their European counterparts in that the latter are one to two orders of magnitude smaller in area, but correspondingly thicker, and are cut or bounded by normal faults penetrating from the shale to the surface. There is thus an inherent risk of groundwater resource contamination via these faults during or after unconventional resource appraisal and development. US shale exploration experience cannot simply be transferred to the UK. The Bowland Basin, with 1900 m of Lower Carboniferous shale, is in the vanguard of UK shale gas development. A vertical appraisal well to test the shale by hydraulic fracturing (fracking), the first such in the UK, triggered earthquakes. Re-interpretation of the 3D seismic reflection data, and independently the well casing deformation data, both show that the well was drilled through the earthquake fault, and did not avoid it, as concluded by the exploration operator. Faulting in this thick shale is evidently difficult to recognise. The Weald Basin is a shallower Upper Jurassic unconventional oil play with stratigraphic similarities to the Bakken play of the Williston Basin, USA. Two Weald licensees have drilled, or have applied to drill, horizontal appraisal wells based on inadequate 2D seismic reflection data coverage. I show, using the data from the one horizontal well drilled to date, that one operator failed identify two small but significant through-going normal faults. The other operator portrayed a seismic line as an example of fault-free structure, but faulting had been smeared out by reprocessing. The case histories presented show that: (1) UK shale exploration to date is characterised by a low degree of technical competence, and (2) regulation, which is divided between four separate authorities, is not up to the task. If UK shale is to be exploited safely: (1) more sophisticated seismic imaging methods need to be developed and applied to both basins, to identify faults in shale with throws as small as 4–5 m, and (2) the current lax and inadequate regulatory regime must be overhauled, unified, and tightened up.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 440-459 ◽  
Author(s):  
Ranajit Ghose ◽  
Jeroen Goudswaard

A cone penetration test (CPT) is the most common geotechnical testing method used to estimate in situ the strength properties of soil. Although CPT provides valuable information, this information is restricted to the location of the measurement. We propose a new concept to integrate shallow S‐wave reflection seismic data with CPT data in order to obtain laterally continuous subsoil information. In this vein, a valid quantitative means to relate seismic reflections to CPT data is a primary requirement. The approach proposed here is based on the characterization of the scaling behavior of the local fine‐scale S‐wave velocity information extracted from the seismic reflection data and the same behavior of the CPT cone resistance. The local velocity contrast information is extracted by linearized Zoeppritz inversion of the amplitude‐preserved prestack reflection data. We have formulated a multiscale analysis approach employing the continuous wavelet transform in order to quantitatively characterize the nature of change at an interface of the local S‐wave velocity contrast and the CPT cone resistance and to illuminate any relation between these two. The multiscale analysis estimates the singularity parameter α, which indicates the nature of the interfacial change. The application of our method to the field data has uncovered a striking relation between the nature of variation of the local S‐wave velocity contrast and that of CPT cone resistance; otherwise, such a relation was not visible. Detailed analyses of two extensive field datasets have shown that the lateral fine‐scale variation of soil strength, as seen by CPT cone resistance, has a close resemblance with the variation of the local S‐wave velocity function as seen by angle‐dependent reflection measurements. This leads to a unique possibility to integrate two very different in‐situ measurements—reflection seismic and CPT—providing laterally continuous detailed information of the soil layer boundaries.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
I. Vargas-Cordero ◽  
U. Tinivella ◽  
F. Accaino ◽  
F. Fanucci ◽  
M. F. Loreto ◽  
...  

Multichannel seismic reflection data recorded between Itata (36°S) and Coyhaique offshores (43°S) were processed to obtain seismic images. Analysis of the seismic profiles revealed that weak and discontinuous bottom simulating reflectors were associated to basal accretion processes, while strong and continuous bottom simulating reflectors were associated to frontal accretion processes. This can be explained considering that during basal accretion processes, extensional tectonic movements due to uplifting can favour fluid escapes giving origin to weaker and most discontinuous bottom simulating reflectors. During frontal accretion processes (folding and thrusting), high fluid circulation and stable tectonic conditions however can be responsible of stronger and most continuous bottom simulating reflectors. Along the Arauco-Valdivia offshores, steep accretionary prisms, normal faults, slope basins, and thicker underplated sediment bed were associated to basal accretion, while along the Itata, Chiloe and Coyhaique offshores, small accretionary prisms, folding, and thinner underplated sediment bed were associated to frontal accretion.


2016 ◽  
Author(s):  
A. C. Gebhardt ◽  
Lieven Naudts ◽  
Lies De Mol ◽  
Jan Klerkx ◽  
Kanatbek Abdrakhmatov ◽  
...  

Abstract. A total of 84 seismic profiles mainly from the western and eastern deltas of Lake Issyk-Kul were used to identify lake-level changes. Seven stratigraphic sequences were identified each containing a series of delta lobes that were formed during former lake-level stillstands. Lake-level has experienced at least four cycles of stepwise fall and rise of 400 m or more. These fluctuations were mainly caused by past changes in the atmospheric circulation pattern during the past. During periods of low lake levels, the Siberian High likely was strong, bringing dry air masses from the Mongolian steppe. The strong Siberian High blocked the mid-latitude Westerlies. During periods of high lake levels, the Siberian High must have been weaker or displaced, and the mid-latitude Westerlies could bring moister air masses from the Mediterranean and North Atlantic regions.


2020 ◽  
Author(s):  
Gábor Tari ◽  
Didier Arbouille ◽  
Zsolt Schléder ◽  
Tamás Tóth

Abstract. The concept of structural inversion was introduced in the early 1980s. By definition, an inversion structure forms when a pre-existing extensional (or transtensional) fault controlling a hangingwall basin containing a syn-rift or passive fill sequence subsequently undergoes compression (or transpression) producing partial (or total) extrusion of the basin fill. Inverted structures provide traps for petroleum exploration, typically four-way structural closures. As to the degree of inversion, based on large number of worldwide examples seen in various basins, the most preferred petroleum exploration targets are mild to moderate inversional structures, defined by the location of the null-points. In these instances, the closures have a relatively small vertical amplitude, but simple in a map-view sense and well imaged on seismic reflection data. Also, the closures typically cluster above the extensional depocentres which tend to contain source rocks providing petroleum charge during and after the inversion. Cases for strong or total inversion are generally not that common and typically are not considered as ideal exploration prospects, mostly due to breaching and seismic imaging challenges associated with the trap(s) formed early on in the process of inversion. Also, migration may become tortuous due to the structural complexity or the source rock units may be uplifted above the hydrocarbon generation window effectively terminating the charge once the inversion occurred. For any particular structure the evidence for inversion is typically provided by subsurface data sets such as reflection seismic and well data. However, in many cases the deeper segments of the structure are either poorly imaged by the seismic data and/or have not been penetrated by exploration wells. In these cases the interpretation of any given structure in terms of inversion has to rely on the regional understanding of the basin evolution with evidence for an early phase of substantial crustal extension by normal faulting.


2015 ◽  
Vol 55 (2) ◽  
pp. 400 ◽  
Author(s):  
Catherine Belgarde ◽  
Gianreto Manatschal ◽  
Nick Kusznir ◽  
Sonia Scarselli ◽  
Michal Ruder

Acquisition of long-offset (8–10 km), long-record length (12–18 sec), 2D reflection seismic and ship-borne potential fields data (WestraliaSpan by Ion/GXT and New Dawn by PGS) on the North West Shelf of Australia provide the opportunity to study rift processes in the context of modern models for rifted margins (Manatschal, 2004). Basement and Moho surfaces were interpreted on seismic reflection data. Refraction models from Geoscience Australia constrain Moho depth and initial densities for gravity modelling through standard velocity-density transformation. 2D joint inversion of seismic reflection and gravity data for Moho depth and basement density constrain depth to basement on seismic. 2D gravity and magnetic intensity forward modelling of key seismic lines constrain basement thickness, type and density. Late Permian and Jurassic-Early Cretaceous rift zones were mapped on seismic reflection data and constrained further by inversion and forward modelling of potential fields data. The Westralian Superbasin formed as a marginal basin in Eastern Gondwana during the Late Permian rifting of the Sibumasu terrane. Crustal necking was localised along mechanically-weak Proterozoic suture belts or Early Paleozoic sedimentary basins (such as Paterson and Canning). Mechanically-strong cratons (such as Pilbara and Kimberley) remained intact, resulting in necking and hyper-extension at their edges. Late Permian hyper-extended areas (such as Exmouth Plateau) behaved as mechanically-strong blocks during the Jurassic to Early Cretaceous continental break-up. Late Permian necking zones were reactivated as failed-rift basins and localised the deposition of the Jurassic oil-prone source rocks that have generated much of the oil discovered on the North West Shelf.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. B55-B70 ◽  
Author(s):  
E. M. Takam Takougang ◽  
A. J. Calvert

To obtain a higher resolution quantitative P-wave velocity model, 2D waveform tomography was applied to seismic reflection data from the Queen Charlotte sedimentary basin off the west coast of Canada. The forward modeling and inversion were implemented in the frequency domain using the visco-acoustic wave equation. Field data preconditioning consisted of f-k filtering, 2D amplitude scaling, shot-to-shot amplitude balancing, and time windowing. The field data were inverted between 7 and 13.66 Hz, with attenuation introduced for frequencies ≥ 10.5 Hz to improve the final velocity model; two different approaches to sampling the frequencies were evaluated. The limited maximum offset of the marine data (3770 m) and the relatively high starting frequency (7 Hz) were the main challenges encountered during the inversion. An inversion strategy that successively recovered shallow-to-deep structures was designed to mitigate these issues. The inclusion of later arrivals in the waveform tomography resulted in a velocity model that extends to a depth of approximately 1200 m, twice the maximum depth of ray coverage in the ray-based tomography. Overall, there is a good agreement between the velocity model and a sonic log from a well on the seismic line, as well as between modeled shot gathers and field data. Anomalous zones of low velocity in the model correspond to previously identified faults or their upward continuation into the shallow Pliocene section where they are not readily identifiable in the conventional migration.


Sign in / Sign up

Export Citation Format

Share Document