CHENILLE : Coupled beHaviour undErstaNdIng of fauLts : from the Laboratory to the fiEld

Author(s):  
Audrey Bonnelye ◽  
Pierre Dick ◽  
Stefan Lüth ◽  
Jan Henninges ◽  
Grzegorz Kwiatek ◽  
...  

<p>The understanding of the coupled thermo-hydro-mechanical behaviour of fault zones is of fundamental importance for a variety of societal and economic reasons, such as the sustainable energy transition for the safe use of natural resources (energy storage, nuclear waste disposal or geothermal energy). The overall objective of this inter-disciplinary project is to create a dataset that will allow to highlight the physical processes resulting from a thermal and hydric load on an existing, identified and characterized fault zone.</p><p> </p><p>An in situ experiment will be performed at IRSN’s Tournemire Underground Research Laboratory to evaluate the hydraulic properties and mechanical behaviour of a fault zone in a shale formation due to an increase of gas or water pressure under incremental thermal loading. This fracturing field tests will be conducted using four types of boreholes drilled from the URL : (i) one injection borehole (INJ) with one chamber measuring 10 m in length; (ii) four boreholes (H1 to H4) dedicated to host steel canister electrical heaters, (iii) 5 boreholes (S1 to S5) dedicated to the geophysical monitoring of seismic and aseismic fracturing processes, (iv) two to four boreholes (M1 to M4) to record deformation and estimate fracture location, which will help assess the seismic survey. After an initial saturation phase of the chamber, successive sequences of fluid injection tests are planned. The preliminary injection tests will be done stepwise either at constant flow or at constant pressure rate in order to obtain a steady-state flow regime at normal in situ temperatures. The hydraulic conductivity and permeability of the fault zone will be then inferred. A second stage of hydraulic testing will involve the determination of the main hydraulic parameters during a stepwise increase of temperature within the volume (maximum temperature 150°C). In the meantime, the seismological responses of the injected structures, from the static deformation to the high-frequency (100-kHz) acoustic emissions will be surveyed. The evolution of temperature and deformation will be monitored thanks to fibre optic array. In addition, a controlled seismic experiment is proposed, using coupled magnetostrictive vibrators to investigate the structural environment before and after experiment.</p><p> </p><p>Moreover, to accompany the field study, a series of laboratory experiments will be conducted to understand the chemical and structural evolution occurring within fault zones during the thermal and hydraulic loading. Experiments in climatic chambers exposing the samples to the same heat treatment as that of the in situ experiment will be carried out in order to compare the mineralogical composition evolution of the samples with those taken from the field investigated zone. Finally, a rock mechanical study, from the microscopic to the centimeter scale with monitoring of the acoustic properties will be carried out. This study will include experiments from Scanning Electron Microscope with Energy Dispersive Spectroscopy (SEM-EDS) allowing the identification of the micro-scale mechanisms of deformation localization to which it is planned to add an acoustic measurement system. In order to study the evolution of mechanical behaviour as a function of scale, experiments in triaxial press, again with acoustic monitoring, are planned.</p>

Author(s):  
Yannick Wileveau ◽  
Kun Su ◽  
Mehdi Ghoreychi

A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed.


2013 ◽  
Vol 649 ◽  
pp. 211-214
Author(s):  
Milan Bielek ◽  
Boris Bielek ◽  
Juraj Híreš ◽  
Jan Szabo

Natural physical cavity. Quantification of annual temperature regime of natural physical cavity by in-situ experiment. Annual course of temperature of outdoor climate. Annual course of maximum temperature of natural physical cavity of optimal south-west orientation. Concept of new possibilities for energy utilization of air from natural physical cavities. Two-stage system for utilization of renewable energy sources.


2012 ◽  
Vol 7 (2) ◽  
pp. 99-106
Author(s):  
Milan Bielek ◽  
Boris Bielek ◽  
Juraj Híreš ◽  
Ján Szabó

Abstract Natural physical cavity. Quantification of annual temperature regime of natural physical cavity by in-situ experiment. Annual course of temperature of outdoor climate. Annual course of maximum temperature of natural physical cavity of optimal south-west orientation. Concept of new possibilities for energy utilization of air from natural physical cavities. Two-stage system for utilization of renewable energy sources.


2019 ◽  
Vol 98 ◽  
pp. 01013
Author(s):  
Frédéric-Victor Donzé ◽  
Alexandra Tsopela ◽  
Yves Guglielmi ◽  
Pierre Henry ◽  
Claude Gout

Fracture interaction mechanisms and reactivation of natural discontinuities under fluid pressurization conditions inside fault zone can represent critical issues in risk assessment of caprock integrity. A field injection test, carried out in a damage fault zone at the decameter scale i.e. mesoscale, has been studied using a Distinct Element Model. Considering the complex structural nature of a fault zone, the contribution of fracture sets on the bulk permeability has been investigated during a hydraulic injection. It has been shown that their orientation for a given in-situ stress field plays a major role. However, if homogeneous properties are assigned to the fracture planes in the model, the limited irreversible displacements cannot be reproduced. Despite these limited displacements (40 µm maximum), the transmissivity increased by a factor of 10-100. These results provide insights in fracture controlled permeability of fault zones depending on the geometrical properties of the fractures and their resulting hydro-mechanical behavior for a given in–situ stress field.


2020 ◽  
Author(s):  
Alberto Ceccato ◽  
Giulio Viola ◽  
Marco Antonellini ◽  
Giulia Tartaglia ◽  
Eric James Ryan

<p>The detailed characterization of internal fault zone architecture and  petrophysical and geomechanical properties of fault rocks is fundamental to understanding the flow and mechanical behaviour of mature fault zones. The Goddo normal fault (Bømlo – Norway) accommodated c. E-W extension related to North Sea Rifting from Permian to Early Cretaceous times [1]. It represents a good example of a mature, iteratively reactivated and thus long-lived (seismogenic?) fault zone, developed in a pervasively fractured granitoid basement at upper crustal conditions in a regional extensional setting.</p><p>Field characterization of the fault zone’s structural facies and analysis of background fracture patterns in the protolith have been integrated with in-situ petrophysical and geomechanical surveys of the recognized fault zone architectural components. In-situ air-permeability and mechanical directional tests (performed with NER TinyPerm III air-minipermeameter and DRC GeoHammer, L-type Schmidt hammer, respectively) have allowed for the quantification of the permeability tensor and mechanical properties (UCS and elastic modulus) within each brittle structural facies. Mechanical properties measured parallel to fault rock fabric of cataclasite- and gouge-bearing structural facies differ by up to one order of magnitude from those measured perpendicularly to it (~10 MPa vs. 100-200 MPa in UCS, respectively). Accordingly, permeability of cataclasite- and gouge-bearing facies is several orders of magnitude larger when measured parallel to fault-rock fabric than that perpendicular to it (10<sup>-0</sup>-10<sup>-1</sup> D vs. 10<sup>-2</sup>-10<sup>-3</sup> D, respectively). Virtual outcrop models (VOMs) of the fault zone were obtained from high-resolution UAV-photogrammetry. Field measurements of fracture orientations were used for calibration of the VOMs to construct a statistically robust fracture dataset. The results of VOMs structural analysis allowed for the quantification of fracture intensity and geometrical characteristics of mesoscopic fracture patterns within the different domains of the fault zone architecture.</p><p>Results from field, VOMs structural analysis, and in-situ petrophysical investigations have been integrated into a realistic 3D fault zone model with the software 3DMove (Petex). This model can be used to investigate the influence of mesoscopic fracture patterns, related to either the fault zone or the background fracturing, on the hydro-mechanical behaviour of a mature fault zone. In addition, the evolution of the hydro-mechanical properties through time can be assessed by integrating the progressive development of brittle structural facies and fracture sets developed during the incremental strain and stress history into the model. This contribution proposes a geologically-constrained method to quantify the geometry of 3D fault zones, as a possible tool for models to be adopted in stress-strain analysis, hydraulic characterization and in the mechanical analysis of fault zones.</p><p>[1] Viola, G., Scheiber, T., Fredin, O., Zwingmann, H., Margreth, A., & Knies, J. (2016). Deconvoluting complex structural histories archived in brittle fault zones. Nature communications, 7, 13448.</p>


2018 ◽  
Vol 71 (0) ◽  
pp. 33-42
Author(s):  
Shigeru Ino ◽  
Shigeyuki Suda ◽  
Hidekuni Kikuchi ◽  
Shiro Ohkawa ◽  
Shintaro Abe ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 564
Author(s):  
Vladimir Čebašek ◽  
Veljko Rupar ◽  
Stevan Đenadić ◽  
Filip Miletić

The bucket-wheel dredge “Kovin I” for underwater coal mining with bucket-wheel type UCW-450 has been in operation for over 20 years. Based on analyzing the bucket-wheel dredger performance, productivity, maintenance costs, and reliability, a rational decision was made: to rehabilitate the most essential parts of the dredge, including the bucket wheel and the gearbox. However, the selection and construction of the excavator parts were performed on the ground of available laboratory data for digging resistance. The data itself was determined by the testing methodology that did not include the influence of surrounding water pressure at a certain depth of mining. According to the previous findings, it was necessary to develop a specific research and testing program that would involve appropriate laboratory testing of the geomechanical parameters. These were to represent the influence of hydrostatic water pressure on the working environment—coal. Nevertheless, geomechanical laboratory research tests were initially modified to provide reliable data of cutting resistance, especially in the water under different hydrostatic pressures, fully simulating the “in situ” working conditions of mining, i.e., cutting.


2021 ◽  
Vol 96 ◽  
pp. 107084
Author(s):  
Cui Zhibo ◽  
Su Zhaoqian ◽  
Hou Dandan ◽  
Li Genzong ◽  
Wu Jian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document