Effect of nitryl chloride chemistry on oxidants concentrations during the KORUS-AQ campaign

Author(s):  
Hyeonmmin Kim ◽  
Rokjin Park ◽  
Jaein Jeong ◽  
Saewung Kim ◽  
Daun Jeong ◽  
...  

<p>Nitryl chloride (ClNO<sub>2</sub>) plays an important role as a night-time reservoir of NO<sub>X</sub> and the source of Cl radical during the daytime, which consequently affects the ozone photochemistry. Its impacts on regional air quality in East Asia, however, are not fully understood so far. We here use extensive observations during the international KORea-US cooperative Air Quality field study in Korea (KORUS-AQ), which occurred in May-June 2016, with a 3-D chemistry transport model to examine the impacts of ClNO<sub>2</sub> chemistry on radical species and total nitrate concentrations in East Asia. We first update the model by implementing chlorine chemistry and latest anthropogenic chlorine emissions of China and South Korea. We conduct model simulations for May-June, 2016 and validate the model by comparing against the observations from the KORUS-AQ campaign. We find that the ClNO<sub>2</sub> chemistry in the model results in an increase of ozone by ~1.4 ppbv (~2.5%), Cl radical by ~ 4.6x10<sup>3</sup> molec cm<sup>-3</sup> (~3600%), OH ~8.2x10<sup>4</sup> molec cm<sup>-3</sup> (~5.3%), HO<sub>2</sub> ~6.6 molec cm<sup>-3</sup> (~3.0%), a decrease of TNO<sub>3</sub> (HNO<sub>3</sub> + nitrate aerosol) concentrations by ~2 μg m<sup>-3</sup> on a daily mean basis during the campaign. Overall, the enhanced conversion of NO to NO<sub>2</sub> driven by ClNO<sub>2</sub> chemistry contributes to higher oxidant concentrations in the model. As a result, the updated model shows a better agreement with the observations in Korea during the KORUS-AQ campaign.</p>

2012 ◽  
Vol 12 (8) ◽  
pp. 19371-19421 ◽  
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The adoption of H2 internal combustion engines decreases tropospheric burdens of ozone (1%), CO (18%), soot (17%), and sulfate aerosol (3%) in the A1FI scenario, and decreases those of ozone (1%), CO (7%), soot (7%), and sulfate aerosol (3%) in the B1 scenario. In the future, people residing in the contiguous United States are expected to experience significantly fewer days of elevated levels of pollution if a H2 fuel cell road transportation sector is adopted. Health benefits of transitioning to a H2 economy for citizens in developing nations, like China and India, will be much more dramatic particularly in megacities with severe air-quality problems that are exacerbating.


2013 ◽  
Vol 13 (13) ◽  
pp. 6117-6137 ◽  
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario. The adoption of H2 internal combustion engines would decrease tropospheric burdens of ozone (1%), CO (18%), soot (17%), and sulfate aerosol (3%) in the A1FI scenario, and would decrease those of ozone (1%), CO (7%), soot (7%), and sulfate aerosol (3%) in the B1 scenario. In the future, people residing in the contiguous United States could expect to experience significantly fewer days of elevated levels of pollution if a H2 fuel cell road transportation sector were to be adopted. Health benefits of transitioning to a H2 economy for citizens in developing nations, like China and India, will be much more dramatic, particularly in megacities with severe, intensifying air-quality problems.


2003 ◽  
Vol 108 (D21) ◽  
Author(s):  
R. B. Pierce ◽  
J. A. Al-Saadi ◽  
T. Schaack ◽  
A. Lenzen ◽  
T. Zapotocny ◽  
...  

2010 ◽  
Vol 10 (2) ◽  
pp. 3457-3498 ◽  
Author(s):  
L. K. Emmons ◽  
E. C. Apel ◽  
J.-F. Lamarque ◽  
P. G. Hess ◽  
M. Avery ◽  
...  

Abstract. An extensive set of measurements was made in and around Mexico City as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) experiments in March 2006. Simulations with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), a global chemical transport model, have been used to provide a regional context for these observations and assist in their interpretation. These MOZART-4 simulations reproduce the aircraft observations generally well, but some differences in the modeled volatile organic compounds (VOCs) from the observations result from incorrect VOC speciation assumed for the emission inventories. The different types of CO sources represented in the model have been "tagged" to quantify the contributions of regions outside Mexico, as well as the various emissions sectors within Mexico, to the regional air quality of Mexico. This analysis indicates open fires have some, but not a dominant, impact on the atmospheric composition in the region around Mexico City, when averaged over the month. However, considerable variation in the fire contribution (2–15% of total CO) is seen during the month. The transport and photochemical aging of Mexico City emissions were studied using tags of CO emissions for each day, showing that typically the air near Mexico City was a combination of many ages. Ozone production in MOZART-4 is shown to agree well with the net production rates from box model calculations constrained by the MILAGRO aircraft measurements. Ozone production efficiency derived from the ratio of Ox to NOz is higher in MOZART-4 than in the observations for moderately polluted air. OH reactivity determined from the MOZART-4 results shows the same increase in relative importance of oxygenated VOCs downwind of Mexico City as the reactivity inferred from the observations. The amount of ozone produced by emissions from Mexico City and surrounding areas has been quantified in the model by tracking NO emissions, showing little influence beyond Mexico's borders, and also relatively minor influence from fire emissions on the monthly average tropospheric ozone column.


2009 ◽  
Vol 2 (2) ◽  
pp. 1449-1486 ◽  
Author(s):  
T. L. Otte ◽  
J. E. Pleim

Abstract. The Community Multiscale Air Quality (CMAQ) modeling system, a state-of-the-science regional air quality modeling system developed by the US Environmental Protection Agency, is being used for a variety of environmental modeling problems including regulatory applications, air quality forecasting, evaluation of emissions control strategies, process-level research, and interactions of global climate change and regional air quality. The Meteorology-Chemistry Interface Processor (MCIP) is a vital piece of software within the CMAQ modeling system that serves to, as best as possible, maintain dynamic consistency between the meteorological model and the chemical transport model. MCIP acts as both a post-processor to the meteorological model and a pre-processor to the CMAQ modeling system. MCIP's functions are to ingest the meteorological model output fields in their native formats, perform horizontal and vertical coordinate transformations, diagnose additional atmospheric fields, define gridding parameters, and prepare the meteorological fields in a form required by the CMAQ modeling system. This paper provides an updated overview of MCIP, documenting the scientific changes that have been made since it was first released as part of the CMAQ modeling system in 1998.


2008 ◽  
Vol 8 (14) ◽  
pp. 3867-3880 ◽  
Author(s):  
H. Tanimoto ◽  
Y. Sawa ◽  
S. Yonemura ◽  
K. Yumimoto ◽  
H. Matsueda ◽  
...  

Abstract. Simultaneous ground-based measurements of ozone (O3) and carbon monoxide (CO) were conducted in March 2005 as part of the East Asian Regional Experiment (EAREX) 2005 under the umbrella of the Atmospheric Brown Clouds (ABC) project. Multiple air quality monitoring networks were integrated by performing intercomparison of individual calibration standards and measurement techniques to ensure comparability of ambient measurements, along with providing consistently high time-resolution measurements of O3 and CO at the surface sites in East Asia. Ambient data collected from eight surface stations were compared with simulation results obtained by a regional chemistry transport model to infer recent changes in CO emissions from East Asia. Our inverse estimates of the CO emissions from China up to 2005 suggested an increase of 16% since 2001, in good agreement with the recent MOPITT satellite observations and the bottom-up estimates up to 2006. The O3 enhancement relative to CO in continental pollution plumes traversed in the boundary layer were examined as a function of transport time from the Asian continent to the western Pacific Ocean. The observed ΔO3/ΔCO ratios show increasing tendency during eastward transport events due likely to en-route photochemical O3 formation, suggesting that East Asia is an important O3 source region during spring.


2013 ◽  
Vol 13 (12) ◽  
pp. 5987-5998 ◽  
Author(s):  
S. Mailler ◽  
D. Khvorostyanov ◽  
L. Menut

Abstract. Five one-year air quality simulations over a domain covering Europe have been performed using the CHIMERE chemistry transport model and the EMEP emission dataset for Europe. These five simulations differ only by the representation of the effective emission heights for anthropogenic emissions: one has been run using the EMEP standard recommendations, three others with vertical injection profiles derived from the EMEP recommendations but multiplying the injection height by 0.75, 0.50 and 0.25, respectively, while the last one uses vertical profiles derived from the recent literature. It is shown that using injection heights lower than the EMEP recommendations leads to significantly improved simulation of background SO2, NO2 and O3 concentrations when compared to the Airbase station measurements.


2013 ◽  
Vol 13 (2) ◽  
pp. 3663-3693
Author(s):  
S. Mailler ◽  
D. Khvorostyanov ◽  
L. Menut

Abstract. Five one-year air quality simulations over a domain covering Europe have been performed using the CHIMERE chemistry transport model and the EMEP emission dataset for Europe. These five simulations differ only by the representation of the effective emission heights for anthropogenic emissions: one has been run using the EMEP standard recommandations, three others with vertical injection profiles derived from the EMEP recommandations but multiplying the injection height by respectively 0.75, 0.50 and 0.25, while the last one uses vertical profiles derived from the recent literature. It is shown that using injection heights lower than the EMEP recommandations leads to significantly improved simulation of SO2, NO2 and O3 concentrations when compared to the Airbase station measurements.


Sign in / Sign up

Export Citation Format

Share Document