Effect of potential HONO sources on ROx budgets and SOA and PAN formation in North China in winter

Author(s):  
Jingwei Zhang ◽  
Junling An

<p>Recent wintertime observations in north China found high concentrations of nitrous acid (HONO), secondary organic aerosols (SOA) and peroxyacetyl nitrate (PAN), especially during heavy haze periods, indicating stronger atmospheric oxidation capacity in winter haze days. Researchers speculated that HONO formation was enhanced in haze days through NO<sub>2</sub> heterogeneous reaction on aerosol surfaces, and high concentrations of HONO during daytime further improved SOA and PAN formation.</p><p>In this study, the WRF-Chem model updated with six potential HONO sources was used to quantify the impacts of potential HONO sources on the production and loss rates of RO<sub>x</sub> ( OH+HO<sub>2</sub>+RO<sub>2</sub>) radicals, and on the concentrations of SOA and PAN in the Beijing-Tianjin-Hebei (BTH) region of China during wintertime of 2017. HONO simulations were greatly improved after considering the six potential sources, NO<sub>2</sub> heterogeneous reactions were the main sources of HONO. HONO photolysis was the key precursors of primary OH while the contribution of O<sub>3</sub> photolysis to OH could be neglected, the potential HONO sources remarkably accelerated RO<sub>x</sub> cycles, significantly improved SOA and PAN simulations, especially in heavy polluted periods. The above results suggest that the potential HONO sources should be considered in regional and global chemical transport models when conducting relevant studies.</p>

2018 ◽  
Author(s):  
Hui Li ◽  
Fengkui Duan ◽  
Yongliang Ma ◽  
Kebin He ◽  
Lidan Zhu ◽  
...  

Abstract. Continuous field observations of haze pollution were conducted in winter and summer during 2015 in Zibo, a highly industrialized city in the North China Plain that is adjacent to the Jing-Jin-Ji area. PM2.5 concentration averaged 146.7 ± 85.8 and 82.2 ± 44.3 μg m−3 in winter and summer, respectively. The chemical component contributions to PM2.5 showed obvious seasonal variation. Organics were high in winter, but secondary inorganic aerosols (SIA) were high in summer. From non-haze to haze days, the concentration of SIA increased, implying an important role of secondary processes in the evolution process of the pollution. The diurnal behavior of several pollutants during haze days appeared to fluctuate more, but during non-haze days, it was much more stable, suggesting that complex mechanisms are involved. Specifically, gaseous precursors, mixed layer height (MLH), photochemical activity, and relative humidity (RH) also played important roles in the diurnal variation of the pollutants. Normally, larger gaseous precursor concentrations, photochemical activity, and RH, and lower MLH favored high concentrations. In winter, the formation of sulfate was mainly influenced by RH, indicating the importance of heterogeneous reactions in its formation. In contrast, in summer, photochemistry and SO2 concentration had the largest impact on the sulfate level. We found that Zibo was an ammonia-rich city, especially in winter, meaning that the formation of nitrate was through homogeneous reactions between HNO3 and NH3 in the gas phase, followed by partitioning into the particle phase. The RH, NO2, and Excess NH4+ were the main influencing factors for nitrate in winter, whereas Excess NH4+, RH, and temperature were the key factors in summer. The secondary organic carbon (SOC) level depended on the MLH and photochemistry. In winter, the effect of the MLH was stronger than that of photochemistry, but a reversed situation occurred in summer because of the intensive photochemistry. Our work suggested that the inter-transport between Zibo, one of the most polluted cities in north China, and its adjacent areas should be taken into account when formulating air pollution control policy.


2019 ◽  
Vol 4 ◽  
pp. 203-218
Author(s):  
I.N. Kusnetsova ◽  
◽  
I.U. Shalygina ◽  
M.I. Nahaev ◽  
U.V. Tkacheva ◽  
...  

2021 ◽  
Vol 248 ◽  
pp. 118022
Author(s):  
Min Xu ◽  
Jianbing Jin ◽  
Guoqiang Wang ◽  
Arjo Segers ◽  
Tuo Deng ◽  
...  

Author(s):  
Scott D. Chambers ◽  
Elise-Andree Guérette ◽  
Khalia Monk ◽  
Alan D. Griffiths ◽  
Yang Zhang ◽  
...  

We propose a new technique to prepare statistically-robust benchmarking data for evaluating chemical transport model meteorology and air quality parameters within the urban boundary layer. The approach employs atmospheric class-typing, using nocturnal radon measurements to assign atmospheric mixing classes, and can be applied temporally (across the diurnal cycle), or spatially (to create angular distributions of pollutants as a top-down constraint on emissions inventories). In this study only a short (<1-month) campaign is used, but grouping of the relative mixing classes based on nocturnal mean radon concentrations can be adjusted according to dataset length (i.e., number of days per category), or desired range of within-class variability. Calculating hourly distributions of observed and simulated values across diurnal composites of each class-type helps to: (i) bridge the gap between scales of simulation and observation, (ii) represent the variability associated with spatial and temporal heterogeneity of sources and meteorology without being confused by it, and (iii) provide an objective way to group results over whole diurnal cycles that separates ‘natural complicating factors’ (synoptic non-stationarity, rainfall, mesoscale motions, extreme stability, etc.) from problems related to parameterizations, or between-model differences. We demonstrate the utility of this technique using output from a suite of seven contemporary regional forecast and chemical transport models. Meteorological model skill varied across the diurnal cycle for all models, with an additional dependence on the atmospheric mixing class that varied between models. From an air quality perspective, model skill regarding the duration and magnitude of morning and evening “rush hour” pollution events varied strongly as a function of mixing class. Model skill was typically the lowest when public exposure would have been the highest, which has important implications for assessing potential health risks in new and rapidly evolving urban regions, and also for prioritizing the areas of model improvement for future applications.


2018 ◽  
Vol 18 (5) ◽  
pp. 3147-3171 ◽  
Author(s):  
Scarlet Stadtler ◽  
David Simpson ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Andreas Bott ◽  
...  

Abstract. The impact of six heterogeneous gas–aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated. Our results are loosely consistent with results from earlier studies, although the magnitude of changes induced by N2O5 reaction is at the low end of estimates, which seems to fit a trend, whereby the more recent the study the lower the impacts of these reactions.


2017 ◽  
Author(s):  
Scarlet Stadtler ◽  
David Simpson ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Andreas Bott ◽  
...  

Abstract. The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, EMEP MSC-W and ECHAM-HAMMOZ. Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3 and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modeled surface area density Sa of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in East Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3 and HO2 heterogeneous reaction gain relevance particularly in East Asia due to the presence of high NOx concentrations and high Sa in the same region, although ECHAM-HAMMOZ showed much stronger responses than EMEP in this respect. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with biggest impacts on O3 in spring time when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated.


2016 ◽  
Vol 9 (7) ◽  
pp. 2753-2779 ◽  
Author(s):  
Steffen Beirle ◽  
Christoph Hörmann ◽  
Patrick Jöckel ◽  
Song Liu ◽  
Marloes Penning de Vries ◽  
...  

Abstract. The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the tropospheric column is effectively shielded. The contribution of individual satellite measurements to the stratospheric estimate is controlled by various weighting factors. STREAM is a flexible and robust algorithm and does not require input from chemical transport models. It was developed as a verification algorithm for the upcoming satellite instrument TROPOMI, as a complement to the operational stratospheric correction based on data assimilation. STREAM was successfully applied to the UV/vis satellite instruments GOME 1/2, SCIAMACHY, and OMI. It overcomes some of the artifacts of previous algorithms, as it is capable of reproducing gradients of stratospheric NO2, e.g., related to the polar vortex, and reduces interpolation errors over continents. Based on synthetic input data, the uncertainty of STREAM was quantified as about 0.1–0.2 × 1015 molecules cm−2, in accordance with the typical deviations between stratospheric estimates from different algorithms compared in this study.


Sign in / Sign up

Export Citation Format

Share Document