scholarly journals Ozone Impacts of Gas-Aerosol Uptake in Global Chemistry Transport Models

Author(s):  
Scarlet Stadtler ◽  
David Simpson ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Andreas Bott ◽  
...  

Abstract. The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, EMEP MSC-W and ECHAM-HAMMOZ. Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3 and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modeled surface area density Sa of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in East Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3 and HO2 heterogeneous reaction gain relevance particularly in East Asia due to the presence of high NOx concentrations and high Sa in the same region, although ECHAM-HAMMOZ showed much stronger responses than EMEP in this respect. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with biggest impacts on O3 in spring time when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated.

2018 ◽  
Vol 18 (5) ◽  
pp. 3147-3171 ◽  
Author(s):  
Scarlet Stadtler ◽  
David Simpson ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Andreas Bott ◽  
...  

Abstract. The impact of six heterogeneous gas–aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated. Our results are loosely consistent with results from earlier studies, although the magnitude of changes induced by N2O5 reaction is at the low end of estimates, which seems to fit a trend, whereby the more recent the study the lower the impacts of these reactions.


2019 ◽  
Vol 19 (10) ◽  
pp. 6737-6747 ◽  
Author(s):  
Xionghui Qiu ◽  
Qi Ying ◽  
Shuxiao Wang ◽  
Lei Duan ◽  
Jian Zhao ◽  
...  

Abstract. Comprehensive chlorine heterogeneous chemistry is incorporated into the Community Multiscale Air Quality (CMAQ) model to evaluate the impact of chlorine-related heterogeneous reaction on diurnal and nocturnal nitrate formation and quantify the nitrate formation from gas-to-particle partitioning of HNO3 and from different heterogeneous pathways. The results show that these heterogeneous reactions increase the atmospheric Cl2 and ClNO2 level (∼ 100 %), which further affects the nitrate formation. Sensitivity analyses of uptake coefficients show that the empirical uptake coefficient for the O3 heterogeneous reaction with chlorinated particles may lead to the large uncertainties in the predicted Cl2 and nitrate concentrations. The N2O5 uptake coefficient with particulate Cl− concentration dependence performs better in capturing the concentration of ClNO2 and nocturnal nitrate concentration. The reaction of OH and NO2 in the daytime increases the nitrate by ∼15 % when the heterogeneous chlorine chemistry is incorporated, resulting in more nitrate formation from HNO3 gas-to-particle partitioning. By contrast, the contribution of the heterogeneous reaction of N2O5 to nitrate concentrations decreases by about 27 % in the nighttime, when its reactions with chlorinated particles are considered. However, the generated gas-phase ClNO2 from the heterogeneous reaction of N2O5 and chlorine-containing particles further reacts with the particle surface to increase the nitrate by 6 %. In general, this study highlights the potential of significant underestimation of daytime concentrations and overestimation of nighttime nitrate concentrations for chemical transport models without proper chlorine chemistry in the gas and particle phases.


2018 ◽  
Author(s):  
Xionghui Qiu ◽  
Qi Ying ◽  
Shuxiao Wang ◽  
Lei Duan ◽  
Jian Zhao ◽  
...  

Abstract. A comprehensive chlorine heterogeneous chemistry is incorporated into the Community Multiscale Air Quality (CMAQ) model to evaluate the impact of chlorine-related heterogeneous reaction on diurnal and nocturnal nitrate formation and quantify the nitrate formation from gas-to-particle partitioning of HNO3 and from different heterogeneous pathways. The results show that these heterogeneous reactions increase the atmospheric Cl2 and ClNO2 level, leading to an increase of the nitrate concentration by ~ 10 % in the daytime. However, these reactions also lead to a decrease the nocturnal nitrate by ~ 20 %. Sensitivity analyses of uptake coefficients show that the empirical uptake coefficient for the O3 heterogeneous reaction with chlorinated particles may lead to the large uncertainties in the predicted Cl2 and nitrate concentrations. The N2O5 uptake coefficient with particulate Cl− concentration dependence performs better to capture the concentration of ClNO2 and nocturnal nitrate concentration. The reaction rate of OH and NO2 in daytime increases by ~ 15 % when the heterogeneous chlorine chemistry is incorporated, resulting more nitrate formation from HNO3 gas-to-particle partitioning. By contrast, the contribution of the heterogeneous reaction of N2O5 to nitrate concentrations decreases by about 27 % in the nighttime when its reactions with chloriated particles are considered. However, the generated gas-phase ClNO2 from the heterogeneous reaction of N2O5 and chlorine-containing particles further decompose to increase the nitrate by 6 %. In general, this study highlights the potential of significant underestimation of daytime and overestimation of nighttime nitrate concentrations for chemical transport models without proper chlorine chemistry in the gas and particle phases.


2017 ◽  
Author(s):  
Daniel R. Moon ◽  
Giorgio S. Taverna ◽  
Clara Anduix-Canto ◽  
Trevor Ingham ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2), onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RH) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 % to 66 %, and the increase in γ(HO2) correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that by injecting the amount of TiO2 required to achieve the same cooling effect as the Mt. Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.


2020 ◽  
Author(s):  
Jingwei Zhang ◽  
Junling An

<p>Recent wintertime observations in north China found high concentrations of nitrous acid (HONO), secondary organic aerosols (SOA) and peroxyacetyl nitrate (PAN), especially during heavy haze periods, indicating stronger atmospheric oxidation capacity in winter haze days. Researchers speculated that HONO formation was enhanced in haze days through NO<sub>2</sub> heterogeneous reaction on aerosol surfaces, and high concentrations of HONO during daytime further improved SOA and PAN formation.</p><p>In this study, the WRF-Chem model updated with six potential HONO sources was used to quantify the impacts of potential HONO sources on the production and loss rates of RO<sub>x</sub> ( OH+HO<sub>2</sub>+RO<sub>2</sub>) radicals, and on the concentrations of SOA and PAN in the Beijing-Tianjin-Hebei (BTH) region of China during wintertime of 2017. HONO simulations were greatly improved after considering the six potential sources, NO<sub>2</sub> heterogeneous reactions were the main sources of HONO. HONO photolysis was the key precursors of primary OH while the contribution of O<sub>3</sub> photolysis to OH could be neglected, the potential HONO sources remarkably accelerated RO<sub>x</sub> cycles, significantly improved SOA and PAN simulations, especially in heavy polluted periods. The above results suggest that the potential HONO sources should be considered in regional and global chemical transport models when conducting relevant studies.</p>


2014 ◽  
Vol 14 (4) ◽  
pp. 4421-4456 ◽  
Author(s):  
M. J. Tang ◽  
P. J. Telford ◽  
F. D. Pope ◽  
L. Rkiouak ◽  
N. L. Abraham ◽  
...  

Abstract. Injection of aerosol particles (or their precursors) into the stratosphere to scatter solar radiation back into space, has been suggested as a solar-radiation management scheme for the mitigation of global warming. TiO2 has recently been highlighted as a possible candidate particle because of its high refractive index, but its impact on stratospheric chemistry via heterogeneous reactions is as yet unknown. In this work the heterogeneous reaction of airborne sub-micrometre TiO2 particles with N2O5 has been investigated for the first time, at room temperature and different relative humidities (RH), using an atmospheric pressure aerosol flow tube. The uptake coefficient of N2O5 onto TiO2, γ(N2O5), was determined to be ∼ 1.0 × 10−3 at low RH, increasing to ∼ 3 × 10−3 at 60% RH. The uptake of N2O5 onto TiO2 is then included in the UKCA chemistry climate model to assess the impact of this reaction on stratospheric chemistry. While the impact of TiO2 on the scattering of solar radiation is chosen to be similar to the aerosol from the Mt. Pinatubo eruption, the impact of TiO2 injection on stratospheric N2O5 is much smaller.


2015 ◽  
Vol 15 (22) ◽  
pp. 33731-33754
Author(s):  
T. Wegner ◽  
M. C. Pitts ◽  
L. R. Poole ◽  
I. Tritscher ◽  
J.-U. Grooß ◽  
...  

Abstract. In the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of Polar Stratospheric Clouds (PSC). These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSC indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSCs and the observed chlorine activation can only be explained by an increase in surface area density due to PSCs. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Waseem ◽  
Taza Gul ◽  
Imran Khan ◽  
Arshad Khan ◽  
Anwar Saeed ◽  
...  

AbstractThis investigation describes the hydromagnetic flow of gravity-driven couple stress hybrid nanofluid past a heated plate. The carbon nanotubes (CNTs) are used to characterize the hybrid nanofluid. The heated plate is placed vertically with an application of homogenous-heterogeneous reactions to the assumed flow system. The homogeneous reaction governs by isothermal cubic autocatalytic kinetics while the heterogeneous reaction governs by the first order kinetics. For current study the couple stress hybrid nanofluid is presumed to be conducted electrically with impact of non-uniform magnetic effects. An appropriate set of dimensionless quantities has employed to governing equations and then has solved by homotopy analysis method. The influence of emerging parameters encountered in this work has discussed in detail with the help of graphs. In this study it has examined that, flow of fluid reduces with upsurge in magnetic parameter and volumetric concentrations, whereas thermal and concentration characteristics augment with increase in volumetric concentrations. Moreover, growth in Prandtl number leads to a reduction in thermal characteristics and growth in Schmidt number result a reduction in concentration profile. The impact of various emerging parameters has also studied numerically upon physical quantities. It has established that, with augmentation in values of buoyancy parameter there is a growth in the values of skin friction. A comparison has also carried out between current and established results with a fine agreement in both results.


Sign in / Sign up

Export Citation Format

Share Document