Calculation of temporally high-resolution scaling factors for the thermospheric density from SLR observations

Author(s):  
Lea Zeitler ◽  
Michael Schmidt ◽  
Mathis Bloßfeld ◽  
Sergei Rudenko

<p><span>The motion of a satellite depends on gravitational and non-gravitational accelerations. A major problem in precise orbit determination (POD) of low-Earth orbiting (LEO) satellites is modelling the thermospheric drag. It is the largest non-gravitational acceleration acting on satellites with altitudes lower than 1000 km and decelerates them. In case of the Swarm satellites with an altitude of around 460 km not considering the drag within a POD would cause an error of around 3 meters per revolution in the along-track direction.</span></p><p><span>In this study, we present results of DGFI-TUM in the context of the project TIPOD (Development of High-Precision Thermosphere Models for Improving Precise Orbit Determination of Low-Earth-Orbiting Satellites) funded by DFG in the frame of the SPP 1788 ‘Dynamic Earth’. One aim of this project is the computation of scaling factors for the thermospheric density from different satellite observation techniques, such as SLR, DORIS, GNSS or accelerometry. For a joint estimation of thermospheric model parameters the spatial, temporal and spectral content of the different scaling factors have to be analysed and interpreted. For example, accelerometer measurements along the satellite orbit provide scaling factors as point values. In this study we derive scaling factors from SLR measurements which could be interpreted as quasi-point values. </span></p><p><span>For the POD of LEO satellites, DGFI-TUM’s software package DOGS (DGFI-TUM Orbit and Geodetic parameter estimation Software) is used. It is characterized by the ability to process observations of different space geodetic techniques and to combine their linear parameter estimation systems within a joint Gauss-Markov model. </span></p><p><span>Here, we estimate scaling factors for the thermospheric density with a time resolution much higher than in our previous studies. Therefore, we use information of short passages from selected spherical satellites above SLR ground stations. Different temporal resolutions for the scaling factors varying from 6 hours down to 5 minutes will be tested and discussed in terms of reliability. </span></p>

2020 ◽  
Vol 12 (21) ◽  
pp. 3646
Author(s):  
Xuewen Gong ◽  
Jizhang Sang ◽  
Fuhong Wang ◽  
Xingxing Li

Precise orbit determination (POD) using GNSS has been rapidly developed and is the mainstream technology for the navigation of low Earth orbit (LEO) satellites. The initialization of orbit parameters is a key prerequisite for LEO POD processing. For a LEO satellite equipped with a GNSS receiver, sufficient discrete kinematic positions can be obtained easily by processing space-borne GNSS data, and its orbit parameters can thus be estimated directly in iterative manner. This method of direct iterative estimation is called as the direct approach, which is generally considered highly reliable, but in practical applications it has risk of failure. Stability analyses demonstrate that the direct approach is sensitive to oversized errors in the starting velocity vector at the reference time, which may lead to large errors in design matrix because the reference orbit may be significantly distorted, and eventually cause the divergence of the orbit parameter estimation. In view of this, a more reliable method, termed the progressive approach, is presented in this paper. Instead of estimating the orbit parameters directly, it first fits the discrete kinematic positions to a reference ephemeris in the form of the GNSS broadcast ephemeris, which construct a reference orbit that is smooth and close to the true orbit. Based on the reference orbit, the starting orbit parameters are computed in sufficient accuracy, and then the final orbit parameters are estimated with a high accuracy by using discrete kinematic positions as measurements. The stability analyses show that the design matrix errors are reduced in the progressive approach, which would assure more robust orbit parameter estimation than the direct estimation approach. Various orbit initialization experiments are performed on the KOMPSAT-5 and FY3C satellites. The results have fully verified the high reliability of the proposed progressive approach.


2021 ◽  
Vol 13 (16) ◽  
pp. 3189
Author(s):  
Min Li ◽  
Tianhe Xu ◽  
Haibo Ge ◽  
Meiqian Guan ◽  
Honglei Yang ◽  
...  

The precise orbit determination (POD) accuracy of the Chinese BeiDou Navigation Satellite System (BDS) is still not comparable to that of the Global Positioning System because of the unfavorable geometry of the BDS and the uneven distribution of BDS ground monitoring stations. Fortunately, low Earth orbit (LEO) satellites, serving as fast moving stations, can efficiently improve BDS geometry. Nearly all studies on Global Navigation Satellite System POD enhancement using large LEO constellations are based on simulations and their results are usually overly optimistic. The receivers mounted on a spacecraft or an LEO satellite are usually different from geodetic receivers and the observation conditions in space are more challenging than those on the ground. The noise level of spaceborne observations needs to be carefully calibrated. Moreover, spaceborne observational errors caused by space weather events, i.e., solar geomagnetic storms, are usually ignored. Accordingly, in this study, the actual spaceborne observation noises are first analyzed and then used in subsequent observation simulations. Then, the observation residuals from the actual-processed LEO POD during a solar storm on 8 September 2017 are extracted and added to the simulated spaceborne observations. The effect of the observational errors on the BDS POD augmented with different LEO constellation configurations is analyzed. The results indicate that the noise levels from the Swarm-A, GRACE-A, and Sentinel-3A satellites are different and that the carrier-phase measurement noise ranges from 2 mm to 6 mm. Such different noise levels for LEO spaceborne observations cause considerable differences in the BDS POD solutions. Experiments calculating the augmented BDS POD for different LEO constellations considering spaceborne observational errors extracted from the solar storm indicate that these errors have a significant influence on the accuracy of the BDS POD. The 3D root mean squares of the BDS GEO, IGSO, and MEO satellite orbits are 1.30 m, 1.16 m, and 1.02 m, respectively, with a Walker 2/1/0 LEO constellation, and increase to 1.57 m, 1.72 m, and 1.32 m, respectively, with a Walker 12/3/1 constellation. When the number of LEO satellites increases to 60, the precision of the BDS POD improves significantly to 0.89 m, 0.77 m, and 0.69 m for the GEO, IGSO, and MEO satellites, respectively. While 12 satellites are sufficient to enhance the BDS POD to the sub-decimeter level, up to 60 satellites can effectively reduce the influence of large spaceborne observational errors, i.e., from solar storms.


2019 ◽  
Vol 11 (23) ◽  
pp. 2815 ◽  
Author(s):  
Xingxing Li ◽  
Jiaqi Wu ◽  
Keke Zhang ◽  
Xin Li ◽  
Yun Xiong ◽  
...  

The rapid growing number of earth observation missions and commercial low-earth-orbit (LEO) constellation plans have provided a strong motivation to get accurate LEO satellite position and velocity information in real time. This paper is devoted to improve the real-time kinematic LEO orbits through fixing the zero-differenced (ZD) ambiguities of onboard Global Navigation Satellite System (GNSS) phase observations. In the proposed method, the real-time uncalibrated phase delays (UPDs) are estimated epoch-by-epoch via a global-distributed network to support the ZD ambiguity resolution (AR) for LEO satellites. By separating the UPDs, the ambiguities of onboard ZD GPS phase measurements recover their integer nature. Then, wide-lane (WL) and narrow-lane (NL) AR are performed epoch-by-epoch and the real-time ambiguity–fixed orbits are thus obtained. To validate the proposed method, a real-time kinematic precise orbit determination (POD), for both Sentinel-3A and Swarm-A satellites, was carried out with ambiguity–fixed and ambiguity–float solutions, respectively. The ambiguity fixing results indicate that, for both Sentinel-3A and Swarm-A, over 90% ZD ambiguities could be properly fixed with the time to first fix (TTFF) around 25–30 min. For the assessment of LEO orbits, the differences with post-processed reduced dynamic orbits and satellite laser ranging (SLR) residuals are investigated. Compared with the ambiguity–float solution, the 3D orbit difference root mean square (RMS) values reduce from 7.15 to 5.23 cm for Sentinel-3A, and from 5.29 to 4.01 cm for Swarm-A with the help of ZD AR. The SLR residuals also show notable improvements for an ambiguity–fixed solution; the standard deviation values of Sentinel-3A and Swarm-A are 4.01 and 2.78 cm, with improvements of over 20% compared with the ambiguity–float solution. In addition, the phase residuals of ambiguity–fixed solution are 0.5–1.0 mm larger than those of the ambiguity–float solution; the possible reason is that the ambiguity fixing separate integer ambiguities from unmodeled errors used to be absorbed in float ambiguities.


2019 ◽  
Vol 11 (21) ◽  
pp. 2514 ◽  
Author(s):  
Xingxing Li ◽  
Keke Zhang ◽  
Fujian Ma ◽  
Wei Zhang ◽  
Qian Zhang ◽  
...  

Global navigation satellite system (GNSS) orbits are traditionally determined by observation data of ground stations, which usually need even global distribution to ensure adequate observation geometry strength. However, good tracking geometry cannot be achieved for all GNSS satellites due to many factors, such as limited ground stations and special stationary characteristics for the geostationary Earth orbit (GEO) satellites in the BeiDou constellation. Fortunately, the onboard observations from low earth orbiters (LEO) can be an important supplement to overcome the weakness in tracking geometry. In this contribution, we perform large LEO constellation-augmented multi-GNSS precise orbit determination (POD) based on simulated GNSS observations. Six LEO constellations with different satellites numbers, orbit types, and altitudes, as well as global and regional ground networks, are designed to assess the influence of different tracking configurations on the integrated POD. Then, onboard and ground-based GNSS observations are simulated, without regard to the observations between LEO satellites and ground stations. The results show that compared with ground-based POD, a remarkable accuracy improvement of over 70% can be observed for all GNSS satellites when the entire LEO constellation is introduced. Particularly, BDS GEO satellites can obtain centimeter-level orbits, with the largest accuracy improvement being 98%. Compared with the 60-LEO and 66-LEO schemes, the 96-LEO scheme yields an improvement in orbit accuracy of about 1 cm for GEO satellites and 1 mm for other satellites because of the increase of LEO satellites, but leading to a steep rise in the computational time. In terms of the orbital types, the sun-synchronous-orbiting constellation can yield a better tracking geometry for GNSS satellites and a stronger augmentation than the polar-orbiting constellation. As for the LEO altitude, there are almost no large-orbit accuracy differences among the 600, 1000, and 1400 km schemes except for BDS GEO satellites. Furthermore, the GNSS orbit is found to have less dependence on ground stations when incorporating a large number of LEO. The orbit accuracy of the integrated POD with 8 global stations is almost comparable to the result of integrated POD with a denser global network of 65 stations. In addition, we also present an analysis concerning the integrated POD with a partial LEO constellation. The result demonstrates that introducing part of a LEO constellation can be an effective way to balance the conflict between the orbit accuracy and computational efficiency.


2019 ◽  
Vol 11 (18) ◽  
pp. 2117 ◽  
Author(s):  
Li ◽  
Jiang ◽  
Ma ◽  
Lv ◽  
Yuan ◽  
...  

Traditional precise orbit determination (POD) for low Earth orbit (LEO) satellites relies on observations from ground stations and onboard receivers. Although the accuracy can reach centimeter level, there are still problems such as insufficient autonomous operation capability. The inter-satellite link (ISL) is a link used for communication between satellites and has a function of dual-way ranging. Numerous studies have shown that observational data using ISLs can be adopted for POD of navigation satellites. In this contribution, we mainly focus on LEO satellites POD with ISLs. First, we design LEO constellations with different numbers of satellites and ISL measurements, based on which the constellations are simulated. Then rough tests of POD using different link topologies are carried out. The results show that in the 60-LEO constellation the average 3-dimensional (3D) orbital errors are 0.112 m using “4-connected” link topology with constant 4 links per satellite and 0.069 m using “all-connected” link topology with theoretically maximum numbers of links. After that, we carry out refined POD experiments with several sets of satellite numbers and different observation accuracy. The results show the higher link ranging accuracy and the more numbers of links bring higher POD precision. POD with ISLs gets bad performance in the case of center of gravity reference when link ranging accuracy is poor and numbers of links are small. When the link accuracy is 40 cm, average 3D orbital errors of 60-LEO constellation are 0.358 m, which can only meet the demand of autonomous navigation. With the constraint of the right ascension of the ascending node (RAAN), POD using ISLs reaches an extremely high precision when adopting a spatial reference provided by navigation satellites. For 120-LEO constellation, the average 3D orbital errors are 0.010 m; for 192-LEO constellation, the errors are 0.006 m.


2018 ◽  
Vol 12 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Nan-nan Guo ◽  
Xu-hua Zhou ◽  
Kai Li ◽  
Bin Wu

Abstract With the successful use of GPS-only-based POD (precise orbit determination), more and more satellites carry onboard GPS receivers to support their orbit accuracy requirements. It provides continuous GPS observations in high precision, and becomes an indispensable way to obtain the orbit of LEO satellites. Precise orbit determination of LEO satellites plays an important role for the application of LEO satellites. Numerous factors should be considered in the POD processing. In this paper, several factors that impact precise orbit determination are analyzed, namely the satellite altitude, the time-variable earth’s gravity field, the GPS satellite clock error and accelerometer observation. The GRACE satellites provide ideal platform to study the performance of factors for precise orbit determination using zero-difference GPS data. These factors are quantitatively analyzed on affecting the accuracy of dynamic orbit using GRACE observations from 2005 to 2011 by SHORDE software. The study indicates that: (1) with the altitude of the GRACE satellite is lowered from 480 km to 460 km in seven years, the 3D (three-dimension) position accuracy of GRACE satellite orbit is about 3∼4 cm based on long spans data; (2) the accelerometer data improves the 3D position accuracy of GRACE in about 1 cm; (3) the accuracy of zero-difference dynamic orbit is about 6 cm with the GPS satellite clock error products in 5 min sampling interval and can be raised to 4 cm, if the GPS satellite clock error products with 30 s sampling interval can be adopted. (4) the time-variable part of earth gravity field model improves the 3D position accuracy of GRACE in about 0.5∼1.5 cm. Based on this study, we quantitatively analyze the factors that affect precise orbit determination of LEO satellites. This study plays an important role to improve the accuracy of LEO satellites orbit determination.


Sign in / Sign up

Export Citation Format

Share Document