Overdeepenings modelled with gravimetry-based data

Author(s):  
Dimitri Bandou ◽  
Patrick Schläfli ◽  
Michael Schwenk ◽  
Guilhem Douillet ◽  
Edi Kissling ◽  
...  

<p>The processes and mechanisms resulting in overdeepenings, valleys carved deeper than today’s rivers base level during glaciations, are still a matter of debate. Whether or not these valleys formation is due to glacial or fluvio-glacial processes or through fluvial down cutting in the geological past is difficult to affirm, as the depressions are filled with sediment or host lakes (Cook and Swift, 2012). In order to bypass this limitation, we use precise gravimetric data, GNSS data and borehole data, which we combine within a 3D forward modelling code, Gravi3D. We particularly aim at reconstructing the geometry of overdeepened valleys’ walls, which bear information on the erosional mechanism leading to the formation of these troughs. We proceed through the building of models for a given geometry to reproduce the Bouguer gravity that we measured in the field along sections and on a grid of stations. We constrain our models by using precise density values, determined by gravimetry, along with borehole data.</p><p>We apply this technique to overdeepenings located in the Alpine foreland (Belpberg area, Central Switzerland) because this area hosts multiple overdeepenings from the past glaciations. The region is characterized by three hill ranges made up of Molasse bedrock with c. 300 m-deep and c. 1 km-wide valleys in-between, where overdeepenings with a Quaternary infill are expected. The results of gravity data collection, accomplished over a section with stations spaced between 100 and 300 m and after standard corrections yield a Bouguer anomaly for the Belpberg region that ranges from c. -99 to -106 mgal. We infer this large range to the regional trend (c. 2 mgal over 8 km) and to the effect of the overdeepening infill (2-4 mgal over 1 km), disclosing a sharp anomaly pattern over the inferred overdeeping. The subsequent three steps include: (i) the removal of the regional trend, (ii) the use of the Nettleton method for the quantification of an accurate density contrast between the Molasse bedrock and the Quaternary infill, and (iii) the configuration of Gravi3D for the Belpberg situation, will yield further information on the morphology of the overdeeping. We thus conclude that Gravi3D, within this framework, is a useful tool to determine the geometry of overdeepings in particular, and shallow subsurface bodies and structures in general.</p><p>Reference:</p><p>Cook, S.J., Swift, D.A., 2012. Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth-Science Reviews 115, 332–372.</p>

2021 ◽  
Author(s):  
Dimitri Bandou ◽  
Patrick Schläfli ◽  
Michael Schwenk ◽  
Guilhem A. Douillet ◽  
Edi Kissling ◽  
...  

<p>Interpretations of the processes leading to the formation of overdeepened valleys, where the bedrock lies well below sea level today, are contested as the overdeepenings have been filled by sediments or host lakes making observations difficult. Here, we combine gravimetric, GNSS (Global Navigation Satellite System) and borehole data within a 3D forward modelling framework (Gravi3D) to assess the 3-D subsurface geometry of such overdeepenings in the Swiss plateau, to the North of the Alps. Gravi3D has two components (PRISMA and BGPoly), which allow to obtain analytically the gravity effect of prisms and polygons (Nagy (1966) and Talwani & Ewing (1960)). PRISMA allows first to estimate the spatial extent of an overdeepening and the density contrast between the overdeepening fill and the bedrock. In contrast, BGPoly is designed to disclose the details of a complex 3-D geometry of an overdeepening fill through an approximation of its shape with polygons. Gravi3D will be open access and is designed for a larger scientific community.</p><p> <br>Here, we focus on overdeepenings beneath two valleys, the Aare valley and the Gürbe valley to the South of Bern. In this region, the occurrence of overdeepenings has already been disclosed through drilling, but the details about the geometry have not been elaborated yet. The study region is characterized by three mountain ranges oriented North-South and comprises Burdigalian Upper Marine Molasse bedrock. The Gürbe and Aare valleys in-between are c. 300 m-deep and c. 1 km-wide, where overdeepenings with a >100 m-thick Quaternary fill have already been identified by drilling. The gravity data collected along an 8 km-long profile with stations spaced between 100 and 300 m yield a Bouguer anomaly that ranges from c. -99 to -106 mGal. We relate this anomaly to the regional trend (c. 2 mGal over 8 km) and to the effect of the overdeepenings’ sedimentary fillings (2 – 4 mGal/km), disclosing a sharp anomaly pattern over the inferred tunnel valleys. The removal of the signal related to the regional trend results in a residual anomaly of c. 1 mGal for the bedrock ridge in-between the valleys (Belpberg mountain), and of -2.65 and -3.56 mGal for the Gürbe and Aare valley overdeepenings, respectively. We observe a steeper gravity gradient for the Eastern flank of both overdeepenings. The use of Nettleton method to model the residual gravity anomaly across Belpberg yields a density of 2.5 g/cm<sup>3</sup> for the Molasse bedrock. In addition, the estimation of the largest gravity response through the overdeepening fill, calculated with Prisma yields a density value of c. 2.0 – 2.2 g/cm3 for the Quaternary sediments. As a further information, Prisma predicts a maximum thickness of 140 m for the Quaternary suite beneath the Gürbe valley and at least 200 m beneath the Aare valley. This yields a minimum slope of approximately 18° for the Gürbe overdeepening.</p><p> </p><p>REFERENCES</p><p>Nagy, D.: The gravitational attraction of a right rectangular prism. Geophysics 31, 362–371, 1966.</p><p>Talwani, M., Ewing, M.: Rapid computation of gravitational attraction of three‐dimensional bodies of arbitrary shape. Geophysics 25, 203–225, 1960.</p>


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. G35-G56
Author(s):  
Yassine Abdelfettah ◽  
Jacques Hinderer ◽  
Marta Calvo ◽  
Eléonore Dalmais ◽  
Vincent Maurer ◽  
...  

New land gravity data results acquired in northern Alsace were presented. Compared to the available old Bouguer anomaly, we recovered an accurate Bouguer anomaly field showing data uncertainties [Formula: see text]. A qualitative data analysis using pseudotomographies reveals several negative anomalies suggesting a decrease of the bulk density at the depth of geothermal interest. We have performed a quantitative study on the basis of the existing 3D geologic model derived from a reinterpretation of the vintage seismics. The theoretical gravity response indicates a great mismatch with the observed Bouguer anomaly. The stripping approach was applied, and the stripped Bouguer anomaly indicates that the density values of the Jurassic, but especially for the Triassic, the Buntsandstein, and the upper part of the basement, were overestimated even using the density values measured in the deep geothermal borehole. This suggests that the borehole density values do not reflect the density variations occurring at larger scale. To reduce the Bouguer anomaly during stripping, a negative density contrast should be affected to the Buntsandstein layer overlaying the basement, suggesting that the part located between the Buntsandstein and the upper part of the basement presents a low-density value compared to the reference density, which is not necessarily expected and is not observed in the densities measured in the borehole. Interestingly, a correlation is found between the gravity analyses and the thermal gradient boreholes in the northern part of the study area. For two boreholes, the gravity interpretation suggests a huge density decrease in the Buntsandstein, which may arise from a combination of high-density fracturing and the important quantity of geothermal fluid significantly affecting the bulk density. Analysis of the thermal borehole data suggests that these two boreholes indicate higher geothermal potential compared with the other boreholes.


2021 ◽  
Vol 31 (2) ◽  
pp. 77
Author(s):  
Muh Sarkowi ◽  
Rahmat Catur Wibowo

Gravity research in the Rajabasa geothermal prospect area was conducted to determine geothermalreservoirs and faults as reservoir boundaries. The research includes spectrum analysis and separation of the Bouguer anomaly to obtain a residual Bouguer anomaly, gradient analysis using the second vertical derivative (SVD) technique to identify fault structures or lithological contact, and 3D inversion modeling of the residual Bouguer anomaly to obtain a 3D density distribution subsurface model. Analysis was performed based on all results with supplementary data from geology, geochemistry, micro-earthquake (MEQ) epicenter distribution map, and magnetotelluric (MT) inversion profiles. The study found 3 (three) geothermal reservoirs in Mount Balirang, west of Mount Rajabasa, and south of Pangkul Hot Spring, with a depth of around 1,000-1,500 m from the ground level. Fault structures and lithologies separate the three reservoirs. The location of the reservoir in the Balirang mountain area corresponds to the model data from MEQ, temperature, and magnetotelluric resistivity data. The heat source of the geothermal system is under Mount Rajabasa, which is indicated by the presence of high-density values (might be frozen residual magma), high-temperature values, and the high number of micro-earthquakes epicenters below the peak of Mount Rajabasa.


Geophysics ◽  
1990 ◽  
Vol 55 (7) ◽  
pp. 932-935 ◽  
Author(s):  
Freyr Thorarinsson ◽  
Stefan G. Magnusson

Density values for the Bouguer reduction of two gravity data sets from Iceland are determined using a new method based on minimization of the roughness of the Bouguer anomaly surface. The fractal dimension of the surface is used as a gauge of the roughness. The analysis shows the size of topographic features supported by crust without isostatic compensation to be 25 to 30 km in southwest Iceland and 9 to 10 km inside the active rifting zone. The densities selected for these areas are 2490 and [Formula: see text], respectively.


2018 ◽  
Vol 7 (1) ◽  
pp. 94
Author(s):  
Anatole Eugene Djieto Lordon ◽  
Mbohlieu YOSSA ◽  
Christopher M Agyingi ◽  
Yves Shandini ◽  
Thierry Stephane Kuisseu

Gravimetric studies using the ETOPO1-corrected high resolution satellite-based EGM2008 gravity data was used to define the surface extent, depth to basement and shape of the Mamfe basin. The Bouguer anomaly map was produced in Surfer 11.0. The Fast Fourier Transformed data was analyzed by spectral analysis to remove the effect of the regional bodies in the study area. The residual anomaly map obtained was compared with the known geology of the study area, and this showed that the gravity highs correspond to the metamorphic and igneous rocks while the gravity lows match with Cretaceous sediments. Three profiles were drawn on the residual anomaly map along which 2D models of the Mamfe basin were drawn. The modeling was completed in Grav2dc v2.06 software which uses the Talwini’s algorithm and the resulting models gave the depth to basement and the shape of the basement along the profiles. After processing and interpretation, it was deduced that the Mamfe basin has an average length and width of 77.6 km and 29.2 km respectively, an average depth to basement of 5 km and an overall U-shape basement. These dimensions (especially the depth) theoretically create the depth and temperature conditions for petroleum generation. 


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Gumilar Utamas Nugraha ◽  
Karit Lumban Goal ◽  
Lina Handayani ◽  
Rachmat Fajar Lubis

Lineament is one of the most important features showing subsurface elements or structural weakness such as faults. This study aims to identify subsurface lineament patterns using automatic lineament in Citarum watershed with gravity data. Satellite gravity data were used to generate a sub-surface lineament. Satellite gravity data corrected using Bouguer and terrain correction to obtain a complete Bouguer anomaly value. Butterworth filters were used to separate regional and residual anomaly from the complete Bouguer anomaly value. Residual anomaly gravity data used to analyze sub-surface lineament. Lineament generated using Line module in PCI Geomatica to obtain sub-surface lineament from gravity residual value. The orientations of lineaments and fault lines were created by using rose diagrams. The main trends observed in the lineament map could be recognized in these diagrams, showing a strongly major trend in NW-SE, and the subdominant directions were in N-S. Area with a high density of lineament located at the Southern part of the study area. High-density lineament might be correlated with fractured volcanic rock upstream of the Citarum watershed, meanwhile, low-density lineament is associated with low-density sediment. The high-density fracture might be associated with intensive tectonics and volcanism.


2021 ◽  
Author(s):  
sara sayyadi ◽  
Magnús T. Gudmundsson ◽  
Thórdís Högnadóttir ◽  
James White ◽  
Joaquín M.C. Belart ◽  
...  

<p>The formation of the oceanic island Surtsey in the shallow ocean off the south coast of Iceland in 1963-1967 remains one of the best-studied examples of basaltic emergent volcanism to date. The island was built by both explosive, phreatomagmatic phases and by effusive activity forming lava shields covering parts of the explosively formed tuff cones.  Constraints on the subsurface structure of Surtsey achieved mainly based on the documented evolution during eruption and from drill cores in 1979 and in the ICDP-supported SUSTAIN drilling expedition in 2017(an inclined hole, directed 35° from the vertical). The 2017 drilling confirmed the existence of a diatreme, cut into the sedimentary pre-eruption seafloor (Jackson et al., 2019). </p><p>We use 3D-gravity modeling, constrained by the stratigraphy from the drillholes to study the structure of the island and the underlying diatreme.  Detailed gravity data were obtained on Surtsey in July 2014 with a gravity station spacing of ~100 m. Density measurements for the seafloor sedimentary and tephra samples of the surface were carried out using the ASTM1 protocol. By comparing the results with specific gravity measurements of cores from drillhole in 2017, a density contrast of about 200 kg m<sup>-3</sup> was found between the lapilli tuffs of the diatreme and the seafloor sediments.  Our approach is to divide the island into four main units of distinct density: (1) tuffs above sea level, (2) tuffs below sea level, (3) lavas above sea level, and (4) a lava delta below sea level, composed of breccias over which the lava advanced during the effusive eruption.  The boundaries between the bodies are defined from the eruption history and mapping done during the eruption, aided by the drill cores. </p><p>A complete Bouguer anomaly map is obtained by calculating a total terrain correction by applying the Nagy formula to dense DEMs (5 m spacing out to 1.2 km from station, 200 m spacing between 1.2 km and 50 km) of both island topography and ocean bathymetry.  Through the application of both forward and inverse modeling, using the GM-SYS 3D software, the results provide a 3-D model of the island itself, as well as constraints on diatreme shape and depth.</p>


2005 ◽  
Vol 17 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. MUÑOZ-MARTÍN ◽  
M. CATALÁN ◽  
J. MARTÍN-DÁVILA ◽  
A. CARBÓ

Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show well- defined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.


Geophysics ◽  
1993 ◽  
Vol 58 (12) ◽  
pp. 1785-1791 ◽  
Author(s):  
El‐Sayed M. Abdelrahman ◽  
Hesham M. El‐Araby

The gravity anomaly expression produced by most geologic structures can be represented by a continuous function in both shape (shape factor) and depth variables with an amplitude coefficient related to the mass. Correlation factors between successive least‐squares residual gravity anomalies from a buried vertical cylinder, horizontal cylinder, and sphere are used to determine the shape and depth of the buried geologic structure. For each shape factor value, the depth is determined automatically from the correlation value. The computed depths are plotted against the shape factor representing a continuous correlation curve. The solution for the shape and depth of the buried structure is read at the common intersection of correlation curves. This method can be applied to a Bouguer anomaly profile consisting of a residual component caused by local structure and a regional component. This is a powerful technique for automatically separating the Bouguer data into residual and regional polynomial components. This method is tested on theoretical examples and a field example. In both cases, the results obtained are in good agreement with drilling results.


2017 ◽  
Vol 54 (8) ◽  
pp. 869-882 ◽  
Author(s):  
Régis Roy ◽  
Antonio Benedicto ◽  
Alexis Grare ◽  
Mickaël Béhaegel ◽  
Yoann Richard ◽  
...  

In unconformity-related uranium deposits, mineralization is associated with hydrothermal clay-rich alteration haloes that decrease the density of the host rock. In the Kiggavik uranium project, located in the eastern Thelon Basin, Nunavut (Canada), basement-hosted shallow deposits were discovered by drilling geophysical anomalies in the 1970s. In 2014, gravity data were inverted for the first time using the Geosoft VOXI Earth ModellingTM system to generate three-dimensional (3D) models to assist exploration in the Contact prospect, the most recent discovery at Kiggavik. A 3D unconstrained inversion model was calculated before drilling, and a model constrained by petrophysical data was computed after drilling. The unconstrained inversion provided a first approximation of the geometry and depth of a low-density body and helped to collar the discovery holes of the Contact mineralization. The constrained inversion was computed using density values measured on 315 core samples collected from 21 drill holes completed between 2014 and 2015. The constrained modelling highlights three shallower and smaller low-density bodies that match the geological interpretation and refines the footprint of the gravity anomalies in relation to the current understanding of the deposit. The 3D inversion of gravity data is a valuable tool to guide geologists in exploration of shallow basement-hosted uranium deposits associated with alteration haloes and to assess the deposit gravity geometry.


Sign in / Sign up

Export Citation Format

Share Document