Global geodetic parameters obtained from 14 years Lageos 1 Satellite Laser Ranging

Author(s):  
Nikolay Dimitrov ◽  
Ivan Georgiev ◽  
Anton Ivanov

<p>Satellite Laser Ranging (SLR) data of the geodynamic satellite Lageos-1 (LAser GEOdynamics Satellite) for the period January 2000 - June 2013 are processed and analysed through sequential estimation to obtain multiyear solution for global geodetic parameters - coordinates and velocities of 37 stations located on the main tectonic plates. The analysis is carried out with the Satellite Laser Ranging Processor (SLRP) software, version 4.3, developed in the Department Geodesy of the National Institute of Geophysics, Geodesy and Geography at Bulgarian Academy of Sciences. The software consists of two main programs – orbit determination and parameter estimation modules. Total number of 202 447 measurements are processed and analyzed by monthly batches. Arc dependent parameters, geogravitational parameter - GM, Earth Orientation Parameters (pole coordinates and length of the day - LOD), along track and solar radiation pressure coefficients are obtained from monthly solutions. The weighted root mean squares of the monthly station coordinates solution are between 2 and 16 mm. The analysis of monthly GM time series reveal value of the secular trend Ġ/G = -3.31. 10<sup>-13</sup>yr<sup>-1</sup>. The results obtained contribute to the monitoring of recent tectonics of the major continental plates and global geodynamic parameters.</p>

2021 ◽  
Vol 13 (22) ◽  
pp. 4634
Author(s):  
Enzhe Tao ◽  
Nannan Guo ◽  
Kexin Xu ◽  
Bin Wang ◽  
Xuhua Zhou

Satellite laser ranging (SLR) observations provide an independent validation of the global navigation satellite system (GNSS) orbits derived using microwave measurements. SLR residuals have also proven to be an important indicator of orbit radial accuracy. In this study, SLR validation is conducted for the precise orbits of eight Galileo satellites covering four to eight years (the current longest span), provided by multiple analysis centers (ACs) participating in the multi-GNSS experiment (MGEX). The purpose of this long-term analysis (the longest such study to date), is to provide a comprehensive evaluation of orbit product quality, its influencing factors, and the effect of perturbation model updates on precise orbit determination (POD) processing. A conventional ECOM solar radiation pressure (SRP) model was used for POD. The results showed distinct periodic variations with angular arguments in the SRP model, implying certain defects in the ECOM system. Updated SRP descriptions, such as ECOM2 or the Box-Wing model, led to significant improvements in SLR residuals for orbital products from multiple ACs. The standard deviation of these residuals decreased from 8–10 cm, before the SRP update, to about 3 cm afterward. The systematic bias of the residuals was also reduced by 2–4 cm and the apparent variability decreased significantly. In addition, the effects of gradual SRP model updates in the POD were evident in orbit comparisons. Orbital differences between ACs in the radial direction were reduced from the initial 10 cm to better than 3 cm, which is consistent with the results of SLR residual analysis. These results suggest SLR validation to be a powerful technique for evaluating the quality of POD strategies in GNSS orbits. Furthermore, this study has demonstrated that perturbation models, such as SRP, provide a better orbit modeling for the Galileo satellites.


2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Mateusz Drożdżewski ◽  
Krzysztof Sośnica

AbstractThe Satellite Laser Ranging (SLR) technique provides very accurate distance measurements to artificial Earth satellites. SLR is employed for the realization of the origin and the scale of the terrestrial reference frame. Despite the high precision, SLR observations can be affected by various systematic errors. So far, range biases were used to account for systematic measurement errors and mismodeling effects in SLR. Range biases are constant for all elevation angles and independent of the measured distance to a satellite. Recently, intensity-dependent biases for single-photon SLR detectors and offsets of barometer readings and meteorological devices were reported for some SLR stations. In this paper, we study the possibility of the direct estimation of tropospheric biases from SLR observations to LAGEOS satellites. We discuss the correlations between the station heights, range biases, tropospheric biases, and their impact on the repeatability of station coordinates, geocenter motion, and the global scale of the reference frame. We found that the solution with the estimation of tropospheric biases provides more stable station coordinates than the solution with the estimation of range biases. From the common estimation of range and tropospheric biases, we found that most of the systematic effects at SLR stations are better absorbed by elevation-dependent tropospheric biases than range biases which overestimate the total bias effect. The estimation of tropospheric biases changes the SLR-derived global scale by 0.3 mm and the geocenter coordinates by 1 mm for the Z component, causing thus an offset in the realization of the reference frame origin. Estimation of range biases introduces an offset in some SLR-derived low-degree spherical harmonics of the Earth’s gravity field. Therefore, considering elevation-dependent tropospheric and intensity biases is essential for deriving high-accuracy geodetic parameters.


2019 ◽  
Vol 11 (19) ◽  
pp. 2282 ◽  
Author(s):  
Dariusz Strugarek ◽  
Krzysztof Sośnica ◽  
Daniel Arnold ◽  
Adrian Jäggi ◽  
Radosław Zajdel ◽  
...  

Sentinel-3A/3B (S3A/B) satellites are equipped with a number of precise instruments dedicated to the measurement of surface topography, sea and land surface temperatures and ocean and land surface color. The high-precision orbit is guaranteed by three instruments: Global Positioning System (GPS) receiver, laser retroreflector dedicated to Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) antenna. In this article, we check the possibility of using SLR observations and GPS-based reduced-dynamic orbits of active S3A/B satellites for the determination of global geodetic parameters, such as geocenter motion, Earth rotation parameters (ERPs) and the realization of the terrestrial reference frame, based on data from 2016-2018. The calculation process was preceded with the estimation of SLR site range biases, different network constraining tests and a different number of orbital arcs in the analyzed solutions. The repeatability of SLR station coordinates based solely on SLR observations to S3A/B is at the level of 8-16 mm by means of interquartile ranges even without network constraining in 7-day solutions. The combined S3A/B and LAGEOS solutions show a consistency of estimated station coordinates better than 13 mm, geocenter coordinates with a RMS of 6 mm, pole coordinates with a RMS of 0.19 mas and Length-of-day with a RMS of 0.07 ms/day when referred to the IERS-14-C04 series. The altimetry observations have to be corrected by the geocenter motion to obtain unbiased estimates of the mean sea level rise. The geocenter motion is typically derived from SLR measurements to passive LAGEOS cannonball-like satellites. We found, however, that SLR observations to active Sentinel satellites are well suited for the determination of global geodetic parameters, such as Earth rotation parameters and geocenter motion, which even further increases the potential applications of Sentinel missions for deriving geophysical parameters.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6851
Author(s):  
Marcin Jagoda ◽  
Miłosława Rutkowska ◽  
Paweł Lejba ◽  
Jacek Katzer ◽  
Romuald Obuchovski ◽  
...  

This paper deals with the analysis of local Love and Shida numbers (parameters h2 and l2) values of the Australian Yarragadee and Mount Stromlo satellite laser ranging (SLR) stations. The research was conducted based on data from the Medium Earth Orbit (MEO) satellites, LAGEOS-1 and LAGEOS-2, and Low Earth Orbit (LEO) satellites, STELLA and STARLETTE. Data from a 60-month time interval, from 01.01.2014 to 01.01.2019, was used. In the first research stage, the Love and Shida numbers values were determined separately from observations of each satellite; the obtained values of h2, l2 exhibit a high degree of compliance, and the differences do not exceed formal error values. At this stage, we found that it was not possible to determine l2 from the data of STELLA and STARLETTE. In the second research stage, we combined the satellite observations of MEO (LAGEOS-1+LAGEOS-2) and LEO (STELLA+STARLETTE) and redefined the h2, l2 parameters. The final values were adopted, and further analyses were made based on the values obtained from the combined observations. For the Yarragadee station, local h2 = 0.5756 ± 0.0005 and l2 = 0.0751 ± 0.0002 values were obtained from LAGEOS-1 + LAGEOS-2 and h2 = 0.5742 ± 0.0015 were obtained from STELLA+STARLETTE data. For the Mount Stromlo station, we obtained the local h2 = 0.5601 ± 0.0006 and l2 = 0.0637 ± 0.0003 values from LAGEOS-1+LAGEOS-2 and h2 = 0.5618 ± 0.0017 from STELLA + STARLETTE. We found discrepancies between the local parameters determined for the Yarragadee and Mount Stromlo stations and the commonly used values of the h2, l2 parameters averaged for the whole Earth (so-called global nominal parameters). The sequential equalization method was used for the analysis, which allowed to determine the minimum time interval necessary to obtain stable h2, l2 values. It turned out to be about 50 months. Additionally, we investigated the impact of the use of local values of the Love/Shida numbers on the determination of the Yarragadee and Mount Stromlo station coordinates. We proposed to determine the stations (X, Y, Z) coordinates in International Terrestrial Reference Frame 2014 (ITRF2014) in two computational versions: using global nominal h2, l2 values and local h2, l2 values calculated during this research. We found that the use of the local values of the h2, l2 parameters in the process of determining the stations coordinates influences the result.


2015 ◽  
Vol 111 (3/4) ◽  
pp. 1-9 ◽  
Author(s):  
Christina M. Botai ◽  
Ludwig Combrinck ◽  
Joel O. Botai

Sign in / Sign up

Export Citation Format

Share Document