Assessment of performance of an automatic procedure for a review of recent seismicity in Western Alps compiling an homogeneous and reliable catalog

Author(s):  
Fabrizio Bosco ◽  
Daniele Spallarossa ◽  
Anne Deschamps

<p>The Alpine chain marks the border between different nations, so it’s important in this area the cooperation, the data sharing and the coordination among institutions operating in contiguous regions and nations that are involved in the observation and the management of natural hazards such as earthquakes affecting large portions of the territory.</p><p>As part of the Interreg Alcotra cross-border program, one of the objectives of the RISVAL project concerns the improvement of the seismic hazard assessment and in general of the knowledge of seismicity in the Western Alps. In this area, Italian, French and Swiss stations operate in various national and regional networks, connected to each other, sharing data also with European services (e.g. EIDA). Streaming raw data are the basic type of data shared, since each institution produces its own analyses and computed data, resulting for instance in different seismic catalogs, with of course different characteristics, also in spatio-temporal boundaries.</p><p>Furthermore the monitoring and analysis systems have been interested over the years by technological developments, so that the available data grow exponentially and the catalogs derived from the surveillance activities in near-real time show several internal inhomogeneities in the various time intervals, also considering the different sensitivity and subjectivity of the operators who alternate in carrying out the manual review.</p><p>Therefore emerges the need to process increasingly large amounts of data available, that could be re-analyzed and updated in a homogeneous way according to new developments. To face this effort we wanted to test the performance of a complete automatic procedure (Scafidi et. al, 2019) to re-compile a portion (2012-2019) of the seismic catalog derived by RSNI network (Regional Seismic network of Northwestern Italy) operating routines, including travel-time and strong-motion parameters dataset.</p><p>The procedure, driven by customizable set of parameters suitable for network geometry and seismicity features, relies on a multistep algorithm, that in this work we tested skipping the initial steps concerning the event detection tool on continuous raw data. So we perform it on 21391 already available detected waveform traces for 1549 events: 1) automatic P- and S-phase picker, 2) hypocenter locator (using NonLinLoc package and 3D velocities model), 3) magnitude and strong-motion parameter calculator.</p><p>We firstly evaluate the results for the re-compiled catalog both in terms of distributions of errors and other quality parameters and in terms of time-residuals distributions on the basis of azimuth variation for each station, distinguishing shorter and longer epicentral distances, in order to evaluate anomalies in propagation velocities pattern.</p><p>Then we compare the new catalog results with manual catalogs available in the area, to point out differences in sources and stations calculated parameters: primarily the original RSNI, confirming the reliability of the method, then the Italian national CPTI by INGV, and, with a closer view in the cross-border Alps area, the French ones (RéNaSS, Sismoazur, SISmalp).</p><p>Scafidi D. et al. 2019. A Complete Automatic Procedure to Compile Reliable Seismic Catalogs and Travel-Time and Strong-Motion Parameters Datasets, in Seismological Research Letters, Volume XX, Number XX – 2019, DOI: 10.1785/02201802</p>

2019 ◽  
Vol 90 (3) ◽  
pp. 1308-1317
Author(s):  
Davide Scafidi ◽  
Daniele Spallarossa ◽  
Gabriele Ferretti ◽  
Simone Barani ◽  
Barbara Castello ◽  
...  

2020 ◽  
Author(s):  
Ioannis Fountoulakis ◽  
Christos Evangelidis ◽  
Olga-Joan Ktenidou

<p>The seismic source spatio-temporal rupture processes of events in Japan, Greece and Turkey are imaged by backprojection of strong-motion waveforms. Normalized high-frequency (> 2Hz) S-waveforms from recordings on dense strong-motion networks are used to scan a predefined 3D source volume over time. </p><p>Backprojection is an alternative novel approach to image the spatio-temporal earthquake rupture. The method was first applied for large earthquakes at teleseismic distances, but is nowadays also used at local distances and over higher frequencies. The greatest advantage of the method is that processing is done without any a-priori constraints on the geometry, or size of the source. Thus, the spatio-temporal imaging of the rupture is feasible at higher frequencies (> 1Hz) than conventional source inversion studies, even when the examined fault geometry is complex. This high-frequency energy emitted during an earthquake is of great importance in seismic hazard assessment for certain critical infrastructures. The actual challenge in using high-frequency local recordings is to distinguish the local site effects from the true earthquake source content - otherwise, mapping the former incorrectly onto the latter limits the resolvability of the method. It is not straightforward to remove the site effect component or even to distinguish good reference stations from amid hard-soil and rock sites. In this study, the advantages and limitations of the method are explored using waveform data from well-recorded events in Japan (Kumamoto Mw7.1, 2016), Turkey (Marmara Mw6.4, 2019) and Greece (Antikythera Mw6.1, 2019). For each event and seismic array the resolution limits of the applied method are explored by performing various synthetic tests.</p>


Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 507 ◽  
Author(s):  
Iván Vizcaíno ◽  
Enrique Carrera ◽  
Margarita Sanromán-Junquera ◽  
Sergio Muñoz-Romero ◽  
José Luis Rojo-Álvarez ◽  
...  

2021 ◽  
pp. 096977642110267
Author(s):  
Alexis Gumy ◽  
Guillaume Drevon ◽  
Vincent Kaufmann

With an activity-based approach, this article offers a new reading of cross-border integration by exploring the social and spatial conditions that predispose specific populations of Greater Geneva to cross its borders. Five different daily cross-border patterns were identified showing that travelling to the neighbouring country is still uncommon among the least qualified populations and women, and that this trend now extends beyond the mere cross-border labour market. Logistic regressions show that Greater Geneva is witnessing a functionalisation of its cross-border integration, revealing mechanisms where the increase of particular mobility may foster segregation and inequalities. This article argues for an approach where cross-border integration is not an objective but rather is a consequence of obligations and constraints that individuals face in their daily behaviours.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Abhik Datta ◽  
Kian Fong Ng ◽  
Deepan Balakrishnan ◽  
Melissa Ding ◽  
See Wee Chee ◽  
...  

AbstractFast, direct electron detectors have significantly improved the spatio-temporal resolution of electron microscopy movies. Preserving both spatial and temporal resolution in extended observations, however, requires storing prohibitively large amounts of data. Here, we describe an efficient and flexible data reduction and compression scheme (ReCoDe) that retains both spatial and temporal resolution by preserving individual electron events. Running ReCoDe on a workstation we demonstrate on-the-fly reduction and compression of raw data streaming off a detector at 3 GB/s, for hours of uninterrupted data collection. The output was 100-fold smaller than the raw data and saved directly onto network-attached storage drives over a 10 GbE connection. We discuss calibration techniques that support electron detection and counting (e.g., estimate electron backscattering rates, false positive rates, and data compressibility), and novel data analysis methods enabled by ReCoDe (e.g., recalibration of data post acquisition, and accurate estimation of coincidence loss).


2021 ◽  
Author(s):  
Fabian Lindner ◽  
Joachim Wassermann

<p>Permafrost thawing affects mountain slope stability and can trigger hazardous rock falls. As rising temperatures promote permafrost thawing, spatio-temporal monitoring of long-term and seasonal variations in the perennially frozen rock is therefore crucial in regions with high hazard potential. With various infrastructure in the summit area and population in the close vicinity, Mt. Zugspitze in the German/Austrian Alps is such a site and permafrost has been monitored with temperature logging in boreholes and lapse-time electrical resistivity tomography. Yet, these methods are expensive and laborious, and are limited in their spatial and/or temporal resolution.</p><p>Here, we analyze continuous seismic data from a single station deployed at an altitude of 2700 m a.s.l. in a research station, which is separated by roughly 250 m from the permafrost affected ridge of Mt. Zugspitze. Data are available since 2006 (with some gaps) and reveal high-frequency (>1 Hz) anthropogenic noise likely generated by the cable car stations at the summit. We calculate single-station cross-correlations between the different sensor components and investigate temporal coda wave changes by applying the recently introduced wavelet-based cross-spectrum method. This approach provides time series of the travel time relative to the reference stack as a function of frequency and lag time in the correlation functions. In the frequency and lag range of 1-10 Hz and 0.5-5 s respectively, we find various parts in the coda that show clear annual variations and an increasing trend in travel time over the past 15 years of consideration. Converting the travel time variations to seismic velocity variations (assuming homogeneous velocity changes affecting the whole mountain) results in seasonal velocity changes of up to a few percent and on the order of 0.1% decrease per year. Yet, estimated velocity variations do not scale linearly with lag time, which indicates that the medium changes are localized rather than uniform and that the absolute numbers need to be taken with caution. The annual velocity variations are anti-correlated with the temperature record from the summit but delayed by roughly one month.</p><p>The phasing of the annual seismic velocity change (relative to the temperature record) is in agreement with a previous study employing lapse-time electrical resistivity tomography. Furthermore, the decreasing trend in seismic velocity happens concurrently with an increasing trend in temperature. The results therefore suggest that the velocity changes are related to seasonal thaw and refreeze and permafrost degradation and thus highlight the potential of seismology for permafrost monitoring. By adding additional receivers and/or a fiber-optic cable for distributed acoustic sensing, hence increasing the spatial resolution, the presented method holds promise for lapse-time imaging of permafrost bodies with high spatio-temporal resolution from passive measurements.</p>


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
V. I. Ulomov ◽  
. The GSHAP Region Working Group

The GSHAP Regional Centre in Moscow, UIPE, has coordinated the seismic hazard mapping for the whole territory of the former U.S.S.R. and border regions. A five-year program was conducted to assemble for the whole area, subdivided in five overlapping blocks, the unified seismic catalogue with uniform magnitude, the strong motion databank and the seismic zones model (lineament-domain-source), which form the basis of a newly developed deterministic-probabilistic computation of seismic hazard assessment. The work was conducted in close cooperation with border regions and GSHAP regional centers. The hazard was originally computed in terms of expected MSK intensity and then transformed into expected peak ground acceleration with 10% exceedance probability in 50 years.


2021 ◽  
Author(s):  
Grzegorz Kwiatek ◽  
Maria Leonhardt ◽  
Patricia Martínez-Garzón ◽  
Matti Pentti ◽  
Marco Bohnhoff ◽  
...  

<p>In this study we investigate the statistical spatio-temporal characteristics induced seismicity associated with two stimulation campaigns performed in 2018 and 2020 in a 6.1 km deep geothermal well near Helsinki, Finland as part of the St1 Deep Heat project. We aim to find out whether the seismic activity is passively responding to injection operations, or whether we observe signatures of significant stress transfer and strong interactions between events. The former suggests stable relaxation of seismic energy proportional to hydraulic energy input, while the latter includes stress transfer as an additional source of stress perturbation, hence implying larger seismic hazard.</p><p>The selected catalogs from 2018 and 2020 stimulation contained in total 60,814 and 4,368 seismic events, respectively, recorded during and after stimulation campaigns and above the local magnitude of M -1.5. The analyzed parameters include magnitude-frequency b-value, correlation integral (c-value), fractal dimension (D-value), interevent time statistics, magnitude correlation, interevent time ratio and generalized spatio-temporal distance between earthquakes. The initial observations suggest significant time-invariance of the magnitude-frequency b-value, and increased D and c-values only at high injection rates, the latter also guiding the rate of seismicity. The seismicity covering the stimulation period neither provide signatures of magnitude correlations, nor temporal clustering or anticlustering. The interevent time statistics are generally characterized with Gamma distribution (close to Poissonian distribution), and the generalized spatio-temporal distance suggest very limited triggering (90% of the catalog was classified as background seismicity). The observable parameters suggest the seismicity passively respond to hydraulic energy input rate with little to no time delay, and the total seismic moment is proportional to total hydraulic energy input. The performed study provides the base for implementation of time-dependent probabilistic seismic hazard assessment for the site.</p>


2019 ◽  
Vol 16 (154) ◽  
pp. 20190101 ◽  
Author(s):  
Arianna Bottinelli ◽  
Marco Gherardi ◽  
Marc Barthelemy

Characterizing the spatio-temporal evolution of networks is a central topic in many disciplines. While network expansion has been studied thoroughly, less is known about how empirical networks behave when shrinking. For transportation networks, this is especially relevant on account of their connection with the socio-economical substrate, and we focus here on the evolution of the French railway network from its birth in 1840 to 2000, in relation to the country’s demographic dynamics. The network evolved in parallel with technology (e.g. faster trains) and under strong constraints, such as preserving a good population coverage and balancing cost and efficiency. We show that the shrinking phase that started in 1930 decreased the total length of the network while preserving efficiency and population coverage: efficiency and robustness remained remarkably constant while the total length of the network shrank by 50% between 1930 and 2000, and the total travel time and time-diameter decreased by more than 75% during the same period. Moreover, shrinking the network did not affect the overall accessibility with an average travel time that decreases steadily since its formation. This evolution leads naturally to an increase in transportation multimodality (such as a massive use of cars) and shows the importance of considering together transportation modes acting at different spatial scales. More generally, our results suggest that shrinking is not necessarily associated with a decay in performance and functions but can be beneficial in terms of design goals and can be part of the natural evolution of an adaptive network.


Sign in / Sign up

Export Citation Format

Share Document