scholarly journals Subsurface Seawater Intrusion, an Additional Factor Influencing the Limnological History of the Dead Sea Basin

2016 ◽  
Vol 5 (2) ◽  
pp. 244
Author(s):  
Uri Kafri

<p class="emsd-body"><span lang="EN-GB">A deep core hole, drilled in the middle of the Dead Sea penetrated the Pleistocene- Holocene section, revealed an alternating sequence of fresh water and evaporitic (gypsum, halite) deposits. The vertical facies variations were interpreted as related mainly to lake level changes during this period. The present study, however, proposes an additional factor that influenced these changes, namely subsurface seawater intrusion from the Mediterranean Sea to the endorheic Dead Sea Basin. This proposed process is controlled by the elevation and head difference between both base levels at a given time, because the Mediterranean Sea level also fluctuated during the discussed period. We find that in times of smaller head differences, and assumed lower seawater intrusion, a gypsum facies prevailed in the Dead Sea Basin. In times of greater head differences and assumed more abundant seawater intrusion a halite facies prevailed because of greater sodium chloride input into the Dead Sea.</span></p>

2009 ◽  
Vol 72 (1) ◽  
pp. 1-15 ◽  
Author(s):  
N. Waldmann ◽  
M. Stein ◽  
D. Ariztegui ◽  
A. Starinsky

AbstractIn this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.


Radiocarbon ◽  
2015 ◽  
Vol 57 (2) ◽  
pp. 237-252 ◽  
Author(s):  
Elisa Joy Kagan ◽  
Dafna Langgut ◽  
Elisabetta Boaretto ◽  
Frank Herald Neumann ◽  
Mordechai Stein

The history of lake-level changes at the Dead Sea during the Holocene was determined mainly by radiocarbon dating of terrestrial organic debris. This article reviews the various studies that have been devoted over the past 2 decades to defining the Dead Sea levels during the Bronze and Iron Ages (≃5.5 to 2.5 ka cal BP) and adds new data and interpretation. In particular, we focus on research efforts devoted to refining the chronology of the sedimentary sequence in the Ze'elim Gully, a key site of paleoclimate investigation in the European Research Council project titled Reconstructing Ancient Israel. The Bronze and Iron Ages are characterized by significant changes in human culture, reflected in archaeological records in which sharp settlement oscillations over relatively short periods of time are evident. During the Early Bronze, Intermediate Bronze, Middle Bronze, and Late Bronze Ages, the Dead Sea saw significant level fluctuations, reaching in the Middle Bronze an elevation of ≃370 m below mean sea level (bmsl), and declining in the Late Bronze to below 414 m bmsl. At the end of the Late Bronze Age and upon the transition to the Iron Age, the lake recovered slightly and rose to ≃408 m bmsl. This recovery reflected the resumption of freshwater activity in the Judean Hills, which was likely accompanied by more favorable hydrological-environmental conditions that seem to have facilitated the wave of Iron Age settlement in the region.


2020 ◽  
Author(s):  
Dorita Rostkier-Edelstein ◽  
Pavel Kunin ◽  
Pinhas Alpert

&lt;p&gt;The atmospheric dynamics in the Dead Sea Valley has been studied for decades. However, the studies relied mostly on surface observations and simple coarse-model simulations, insufficient to elucidate the complex flow in the area. In this seminar I will present a first study using high resolution (temporal and spatial) and sophisticate both, measurements and modeling tools. We focused on afternoon hours during summer time, when the Mediterranean Sea breeze penetrates into the Dead Sea Valley and sudden changes of wind, temperature and humidity occur in the valley.&lt;/p&gt;&lt;p&gt;An intense observations period in the area, including ground-based remote sensing and in-situ observations, took place during August and November 2014. The measurements were conducted as part of the Virtual Institute DEad SEa Research Venue (DESERVE) project using the KITcube profiling instruments (wind lidars, radiometer and soundings) along with surface Energy Balance Station. These observations enabled analysis of the vertical profile of the atmosphere at one single location at the foothills of Masada, about 1 km west of the Dead Sea shore.&lt;/p&gt;&lt;p&gt;High resolution (1.1 km grid size) model simulations were conducted using the Advanced Research Weather version of the Weather Forecast and Research mesoscale model (WRF). The simulations enabled analysis of the 3D flow at the Dead Sea Valley, information not provided by the observations at a single location. Sensitivity tests were run to determine the best model configuration for this study.&lt;/p&gt;&lt;p&gt;Our study shows that foehn develops in the lee side of the Judean Mountains and Dead Sea Valley in the afternoon hours when the Mediterranean Sea breeze reaches the area. The characteristics of the Mediterranean Sea breeze penetration into the valley and of the foehn (e.g. their depth) and the impact they have on the boundary layer flow in the Dead Sea Valley (e.g. sudden changes in temperature, humidity and wind) are conditioned to the daily synoptic and mesosocale conditions. In the synoptic scale, the depth of the seasonal pressure trough at sea level and the height of inversion layers play a significant role in determining the breeze and foehn characteristics. In the mesoscale, the intensity of the Dead Sea breeze and the humidity brought by it determines the outcomes at the time of Mediterranean Sea breeze penetration and foehn development. Dynamically, the foehn is associated with a hydraulic jump.&lt;/p&gt;&lt;p&gt;Hypothetical model simulations with modified terrain and with warmer Mediterranean Sea surface temperature were conducted to reveal the relative contribution of each of these factors and of their synergism on the observed phenomena. The information provided by the factor separation study can be useful in future climate projections, when a warmer Mediterranean Sea is expected.&lt;/p&gt;&lt;p&gt;The forecasting feasibility of foehn and the sudden changes in the Dead Sea valley 24 hours in advance using WRF is suggested following the present study. These forecasts can be most valuable for the region affected by pollution penetration from the metropolitan coastal zone.&lt;/p&gt;


1992 ◽  
Vol 38 (3) ◽  
pp. 292-304 ◽  
Author(s):  
Aaron Kaufman ◽  
Yoseph Yechieli ◽  
Michael Gardosh

AbstractThe Dead Sea is surrounded by chemical and detrital sediments that were deposited in its larger precursor lakes, Lake Samra and Lake Lisan. The sedimentary history of these lakes was recon-structed by means of 230Th/234U ages of 30 samples, mostly of argonite laminae, from 8 columnar sections up to 110 km apart. The general validity of the ages was demonstrated by subjecting them to tests of internal isotopic consistency, agreement with stratigraphic order, and concordance with 14C ages. In the south, only the part of the Samra Formation older than 170,000 yr is exposed, while the aragonite-detritus rhythmites found in the central and northern region are generally younger than 120,000 yr. The Lisan Formation started accumulating about 63,000 yr B.P., with the clay and aragonite beds in the south-central area reflecting a rise in water level to at least −280 m. The upper part of the Lisan Formation, the aragonite-rich White Cliff Member, started accumulating about 36,000 yr B.P. The lake probably reached its highest level sometime after this, based on the ages of Lisan sediments preserved in the southernmost reaches of the basin.


Author(s):  
Susan M. Gaines ◽  
Geoffrey Eglinton ◽  
Jürgen Rullkötter

Though the biomarker saga began with attempts to understand the ancient provenance of petroleum and with the concept of “fossil molecules” and search for early forms of life, the explorations of the past 50 years have led organic geochemists far afield of these first endeavors. As Geoff and Max Blumer recognized back in the 1960s, and as microbiologists began to realize in the early 1980s, the usefulness of the biomarker concept is not restricted to geologic time. Most organic geochemists have, at one time or another, applied their techniques and expertise to the resolution of environmental problems, or found a way to address some archaeological mystery. One of the Bristol group’s most vibrant research programs now has its chemists brushing shoulders not with geologists and oceanographers, but with archaeologists and anthropologists concerned with the evolution of human civilizations and societies. Much of the impetus for the application of biomarker concepts to archaeologists’ questions in the 1970s and 1980s came from petroleum geochemists, not least from Arie Nissenbaum, a geochemist at Israel’s Weizmann Institute of Science who developed a keen interest in the role that geological events and circumstance might have played in the history of civilizations in the Fertile Crescent region. Nissenbaum was fascinated by the bizarre geology and chemistry of the Dead Sea Basin area, where oil seeps and impressive raftlike chunks of asphalt floating on the surface of the lake had long tempted oil prospectors to no avail. Renewed interest in the area’s oil potential in the early 1980s attracted a wave of geochemical studies, and Israeli geochemists scrambled for laboratory resources and funding from abroad. Jürgen, still with Dietrich Welte’s group, did a detailed biomarker study at the behest of an Israeli colleague, and when Nissenbaum saw the results he suggested to Jürgen that they apply Jülich’s considerable GC-MS capability to solving an entirely different sort of mystery. Excavations of archaeological sites in the vicinity of the Dead Sea had turned up solid chunks of black, sticky material that was used as early as 3000 B.C., either in materials used for construction or as a glue to attach tool heads to wooden handles.


2005 ◽  
Vol 63 (1) ◽  
pp. 60-77 ◽  
Author(s):  
N. Hazan ◽  
M. Stein ◽  
A. Agnon ◽  
S. Marco ◽  
D. Nadel ◽  
...  

The freshwater Lake Kinneret (Sea of Galilee) and the hypersaline Dead Sea are remnant lakes, evolved from ancient water bodies that filled the tectonic depressions along the Dead Sea Transform (DST) during the Neogene–Quartenary periods. We reconstructed the limnological history (level and composition) of Lake Kinneret during the past ∼40,000 years and compared it with the history of the contemporaneous Lake Lisan from the aspect of the regional and global climate history. The lake level reconstruction was achieved through a chronological and sedimentological investigation of exposed sedimentary sections in the Kinnarot basin trenches and cores drilled at the Ohalo II archeological site. Shoreline chronology was established by radiocarbon dating of organic remains and of Melanopsis shells.The major changes in Lake Kinneret level were synchronous with those of the southern Lake Lisan. Both lakes dropped significantly ∼42,000, ∼30,000, 23,800, and 13,000 yr ago and rose ∼39,000, 26,000, 5000, and 1600 yr ago. Between 26,000 and 24,000 yr ago, the lakes merged into a unified water body and lake level achieved its maximum stand of ∼170 m below mean sea level (m bsl). Nevertheless, the fresh and saline water properties of Lake Kinneret and Lake Lisan, respectively, have been preserved throughout the 40,000 years studied. Calcium carbonate was always deposited as calcite in Lake Kinneret and as aragonite in Lake Lisan–Dead Sea, indicating that the Dead Sea brine (which supports aragonite production) never reached or affected Lake Kinneret, even during the period of lake high stand and convergence. The synchronous level fluctuation of lakes Kinneret, Lisan, and the Holocene Dead Sea is consistent with the dominance of the Atlantic–Mediterranean rain system on the catchment of the basin and the regional hydrology. The major drops in Lake Kinneret–Lisan levels coincide with the timing of cold spells in the North Atlantic that caused a shut down of rains in the East Mediterranean and the lakes drainage area.


Sign in / Sign up

Export Citation Format

Share Document