Small scale CO2 fluxes in a rainfed maize field under N fertilization

Author(s):  
Györgyi Gelybó ◽  
Réka Deli ◽  
Márton Dencső ◽  
Bernadett Kósa ◽  
Viktória Mateika ◽  
...  

<p>Carbon-dioxide (CO<sub>2</sub>) fluxes in the soil-plant-atmosphere system contain bidirectional material transport with organic and inorganic sources and sinks, and various pathways. Proportion of irrigated fields in the total area of Hungarian arable lands is low, and incase of a rainfed field water and CO<sub>2</sub> fluxes are only driven by meteorological factors. In this study we focused on maize under different fertilization treatments to see the plot scale variability of CO<sub>2</sub> fluxes and connected parameters.</p><p>The site is a multifactorial sowing time-fertilizer-maize variety field experiment near Martonvásár. Two treatment plots were selected for the measurements with contrasting 60 kg N ha<sup>-1</sup> and 180 kg N ha<sup>-1</sup> fertilizer treatments and no other factors were considered in the present study. We performed synchronized observations of (i) CO<sub>2</sub> fluxes: soil respiration (Rs; EGM-5 gas analyser + SRC-1 chamber, PPSystems); leaf scale photosynthesis (A; CIRAS-3 portable photosynthesis system, PPSystems)), (ii) soil temperature and soil water content, (iii) plant parameters: root growth (CI-600, CID-Bioscience), plant height, leaf area index (Accupar LP-80 ceptometer, Li-Cor). Data on the above parameters comprise several spatial replicates to explore spatial heterogeneity in case of a maize field managed in accordance with the typical Hungarian practice. The average applied N amount in the country is around 100-105 kg ha<sup>-1</sup>.</p><p>Field measurements for CO<sub>2</sub> fluxes and biotic and abiotic drivers were performed six times in the vegetation period to establish relationship among them. Data were analyzed to optimize the labour intensive protocol for this experimental setup. Photosynthesis varied within the vertical canopy as reflected by measurements on five leaves per plant. Soil respiration was more dependent temporally on soil water availability than on temperature.</p>

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2982
Author(s):  
Katrin Drastig ◽  
Inken Flemming ◽  
Hans-Jörg Gusovius ◽  
Werner B. Herppich

Hemp (Cannabis sativa L.) is a high-yielding multi-purpose crop, but its hydrological functioning is poorly understood. Studies on the interception processes in hemp have been lacking so far. This study contributes to the understanding of the influences of evaporation of intercepted water and other hydrological fluxes within plants of two cultivars, “Santhica 27” and “Ivory”, on the water productivity. To determine water productivity and evaporation from interception, field measurements were conducted on plants of both cultivars at different stages of development. Precipitation (P), throughfall (TF), transpiration (T), and volumetric water content (VWC) were measured along with leaf area index (LAI) and yield of selected plant components. For the entire vegetation period, the cumulative P of 44 mm was converted into 13 mm TF (30%). The inferred evaporation of intercepted water (I) was high at 31 mm (71%). For the assessment water fluxes, the evaporation of intercepted water must be considered in the decision-making process. Besides the LAI, the plant architecture and the meteorological conditions during the cropping cycle seem to be the main factors determining I in the case of plants of both cultivars. Water productivity (WPDM) of the whole plant varied between 3.07 kg m−3 for Ivory and 3.49 for Santhica 27. In the case of bast yield, WPDM was 0.39 kg m-3 for Santhica 27 and 0.45 kg m−3 for Ivory. After the propagation of the uncertainties, the bandwidth of the WPDM of the whole plant was between 0.42 kg m−3 and 2.57 kg m−3. For bast fiber a bandwidth of the WP between 0.06 kg m−3 and 0.33 kg m−3 was calculated. The results show furthermore that even with a precise examination of water productivity, a high bandwidth of local values is revealed on different cultivars. However, generic WP values for fiber crops are not attainable.


2019 ◽  
Vol 11 (7) ◽  
pp. 1966 ◽  
Author(s):  
Ligita Baležentienė ◽  
Ovidijus Mikša ◽  
Tomas Baležentis ◽  
Dalia Streimikiene

Intelligent agricultural solutions require data on the environmental impacts of agriculture. In order for operationalize decision-making for sustainable agriculture, one needs to establish the corresponding datasets and protocols. Increasing anthropogenic CO2 emissions into the atmosphere force the choice of growing crops aimed at mitigating climate change. For this reason, investigations of seasonal carbon exchange were carried out in 2013–2016 at the Training Farm of the Vytautas Magnus University (former Aleksandras Stulginskis University), Lithuania. This paper compares the carbon exchange rate for different crops, viz., maize, ley, winter wheat, spring rapeseed and barley under conventional farming. This study focuses on the carbon exchange rate. We measure the emitted and absorbed CO2 fluxes by applying the closed chamber method. The biomass measurement and leaf area index (LAI) calculations at different plant growth stages are used to evaluate carbon exchange in different agroecosystems. The differences in photosynthetically assimilated CO2 rates were significantly impacted by the leaf area index (p = 0.04) during the plant vegetation period. The significantly (p = 0.02–0.05) strong correlation (r = 0.6–0.7) exists between soil respiration and LAI. Soil respiration composed only 21% of the agroecosystem carbon exchange. Plant respiration ranged between 0.034 and 3.613 µmol m−2 s−1 during the vegetation period composed of a negligible ratio (mean 16%) of carbon exchange. Generally, respiration emissions were obviously recovered by the gross primary production (GPP) of crops. Therefore, the ecosystems were acting as an atmospheric CO2 sink. Barley accumulated the lowest mean GPP 12.77 µmol m−2 s−1. The highest mean GPP was determined for ley (14.28 µmol m−2 s−1) and maize (15.68 µmol m−2 s−1) due to the biggest LAI and particular bio-characteristics. Due to the highest NEP, the ley (12.66 µmol m−2 s−1) and maize (12.76 µmol m−2 s−1) agroecosystems sank the highest C from the atmosphere and, thus, they might be considered the most sustainable items between crops. Consequently, the appropriate choice of crops and their area in crop rotations may reduce CO2 emissions and their impact on the environment and climate change.


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 320
Author(s):  
Marianna Pirone ◽  
Alfredo Reder ◽  
Guido Rianna ◽  
Luca Pagano ◽  
Marco Valerio Nicotera ◽  
...  

Proper soil water retention curves (SWRCs) are necessary for a fair analysis of groundwater flow in unsaturated slopes. The question is whether hydraulic parameters operating in situ can be reliably determined from laboratory tests or physical prototype models in order to interpret and predict soil water distributions in the field. In this paper, some results obtained by tests at different scales (testing on laboratory specimens and a physical prototype) are presented to explore the hydraulic behavior of pyroclastic soils. A theoretical interpretation of the observed behavior in the laboratory and using a physical prototype is proposed by adopting the hysteretic model of Lenhard and Parker. For each tested soil, the main hysteretic loop determined by interpreting experimental tests (at laboratory and prototype scales) overlaps with paths detected by coupling the field measurements of matric suction and water content collected at the site at the same depth. From these results, the physical prototype (medium scale) and the soil specimen (small scale) seem to be acceptable for determinations of SWRC, provided that the air entrapment value is well known.


2015 ◽  
Vol 8 (11) ◽  
pp. 3785-3800 ◽  
Author(s):  
Y. Fan ◽  
O. Roupsard ◽  
M. Bernoux ◽  
G. Le Maire ◽  
O. Panferov ◽  
...  

Abstract. In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land–atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm – the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics of yield and remaining small-scale site-to-site variability of NPP are driven by processes not yet implemented in the model or reflected in the input data. The new sub-canopy structure and phenology and allocation functions in CLM-Palm allow exploring the effects of tropical land-use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.


2021 ◽  
Author(s):  
Alexander Schütt ◽  
Selina Schaaf-Titel ◽  
Joscha N. Becker ◽  
Annette Eschenbach

<p>Urban trees as main part of urban green infrastructure provide manifold ecosystem services and contribute to the wellbeing of humans. Unfortunately, urban trees, especially roadside trees, are severely challenged by both, political conflicts of interests in terms of city development and a variety of physically stressors. Contrary to the known benefits of urban green, its proportion in most cities is still decreasing. Furthermore, climate change exacerbates the already challenging preconditions.</p><p>For northern Germany, climate change is predicted to shift temperature- and precipitation patterns. Simultaneously the frequency of “summer days” and “hot days” are likely to increase, leading to elevated risk of soil drying during the vegetation period.</p><p>The city of Hamburg is home to almost 220.000 roadside trees. Especially trees planted nowadays are exposed to harsh roadside conditions. In the event of drought, young-trees compared to well-established trees, are not in touch with deep- or distant water reservoirs and the risk of vitality loss or death increases.</p><p>Our research aims to characterize the soil hydrological conditions in the rooting zone of roadside young-trees during the first years after plantation. Further it aims to identify spatio-temporal dynamics of soil water response during phases of extreme meteorological drought. Our findings are based on a long-term soil water monitoring across the city of Hamburg, which was started in 2016. The monitoring covers 20 trees from 7 species, planted between 2007 and 2019 with large, medium and low soil sealing. Soil water tension and soil temperature were measured hourly with sensors in the root ball, in the tree pit filled with structural soil and the surrounding soil (16 sensors per site).</p><p>Our data provides a broad characterization of soil water conditions for young-tree sites in urban areas, and show that water supply in years of moderate meteorological drought is not only extremely heterogeneous on large scales, but can also vary greatly on a small scale. The water tension in the root ball, which should provide the highest amount of water per unit, was highly variable and exceeded thresholds even in the first year after plantation and in almost every vegetation period across all sites. In years of high meteorological drought like in 2018, the soil water tensions exceeded the thresholds in almost all compartments, which leads to a risk of vitality losses and mortality.</p><p>Our data show the need for adaption of general tree site concepts for future plantations. This unique dataset will be further completed with the aim to include future sites and plantation strategies e.g. the underground connection of planting pits, to increase the diversity of site characteristics and to develop reliable modelling and recommendations.</p>


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna K. Liljedahl ◽  
Ina Timling ◽  
Gerald V. Frost ◽  
Ronald P. Daanen

AbstractShrub expansion has been observed across the Arctic in recent decades along with warming air temperatures, but tundra shrub expansion has been most pronounced in protected landscape positions such as floodplains, streambanks, water tracks, and gullies. Here we show through field measurements and laboratory analyses how stream hydrology, permafrost, and soil microbial communities differed between streams in late summer with and without tall shrubs. Our goal was to assess the causes and consequences of tall shrub expansion in Arctic riparian ecosystems. Our results from Toolik Alaska, show greater canopy height and density, and distinctive plant and soil microbial communities along stream sections that lose water into unfrozen ground (talik) compared to gaining sections underlain by shallow permafrost. Leaf Area Index is linearly related to the change in streamflow per unit stream length, with the densest canopies coinciding with increasingly losing stream sections. Considering climate change and the circumpolar scale of riparian shrub expansion, we suggest that permafrost thaw and the resulting talik formation and shift in streamflow regime are occurring across the Low Arctic.


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

<p><strong>Straw mulch impact on soil properties and initial soil erosion processes in the maize field</strong></p><p>Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic</p><p>University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia</p><p>(*correspondence to Ivan Dugan: [email protected])</p><p>Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha<sup>-1</sup> under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays L.) field in Blagorodovac, Croatia (45°33’N; 17°01’E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha<sup>-1</sup>), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h<sup>-1</sup>, for 30 min, over 0.785 m<sup>2</sup> plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p < 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p > 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha<sup>-1</sup>, when extrapolated, reached as high as 5.07 t ha<sup>-1 </sup>in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.</p><p><strong>Key words: straw mulch, </strong>rainfall simulation, soil water erosion</p><p><strong>Acknowledgment</strong></p><p>This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).</p><p><strong>Literature</strong></p><p>Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.</p><p>Kisic, I., Bogunovic, I., Birkás, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.</p>


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


Sign in / Sign up

Export Citation Format

Share Document