scholarly journals Remote sensing and GIS based ecological modelling of potential red deer habitats in the test site region DEMMIN (TERENO)

Author(s):  
Amelie McKenna ◽  
Alfred Schultz ◽  
Erik Borg ◽  
Matthias Neumann ◽  
Jan-Peter Mund

<p><strong>Introduction:</strong> The destruction of habitats has not only reduced biological diversity but also affected essential ecosystem services of the Central European cultural landscape. Therefore, in the further development of the cultural landscape and in the management of natural resources, special importance must be attached to the habitat demands of species and the preservation of ecosystem services. The study of ecosystem services has extended its influence into spatial planning and landscape ecology, the integration of which can offer an opportunity to enhance the saliency, credibility, and legitimacy of landscape ecology in spatial planning issues.</p><p><strong>Objective:</strong> This paper proposes a methodology to detect red deer habitats for e.g. huntable game. The model is established on remote sensing based value-added information products, the derived landscape structure information and the use of spatially and temporally imprecise in-situ data (e.g. available hunting statistics). In order to realize this, four statistical model approaches were developed and their predictive performance assessed.</p><p><strong>Methods:</strong> Altogether, our results indicate that based on the data mentioned above, modeling of habitats is possible using a coherent statistical model approach. All four models showed an overall classification of > 60% and in the best case 71,4%. The models based on logistic regression using preference data derived from 5-year hunting statistics, which has been interpreted as habitat suitability. The landscape metrics (LSM) will be calculated on the basis of the Global Forest Change dataset (HANSEN et al. 2013b ). The interpolation of landcover data into landscape-level was made with the software FRAGSTAT and the moving window approach.  Correlation analysis is used to identify relevant LSM serving as inputs; logistic regression was used to derive a final binary classifier for habitat suitability values. Three model variations with different sets of LSM are tested using the unstandardized regression coefficient. Results lead to an insight of the effect of each LSM but not on the strength of the effect. Furthermore, the predicted outcome is rather difficult to interpret as different units and scales for each LSM are used. Hence, we calculated the fourth model using the standardized regression coefficient. It harmonized the measurement units of the LSM and thus allowed a better comparison, interpretation, and evaluation.</p><p><strong>Conclusion:</strong>  Our research reveals that applying a statistical model using coarse data is effective to identify potential red deer habitats in a significant qualitative manner. The presented approach can be analogously applied to other mammals if the relevant structural requirements and empirical habitat suitability data (e.g. home range, biotopes, and food resources) are known. The habitat preferences of red deer are best described by LSM concerning area-relation and wildlife-edge relations. Most important are edges between meadows, pastures or agricultural field and forest, as well as short paths between those elements for food resources. A large proportion of forest is important for species survival and positively influences the occurrence of red deer. Outcomes help to understand species –habitat relation and on which scale wildlife perceives the landscape. In addition, they support the practical habitat management and thus the overall species diversity.</p>

2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2021 ◽  
Vol 214 ◽  
pp. 104195
Author(s):  
Janneke van Oorschot ◽  
Benjamin Sprecher ◽  
Maarten van 't Zelfde ◽  
Peter M. van Bodegom ◽  
Alexander P.E. van Oudenhoven

2014 ◽  
Vol 29 (8) ◽  
pp. 1287-1300 ◽  
Author(s):  
André Mascarenhas ◽  
Tomás B. Ramos ◽  
Dagmar Haase ◽  
Rui Santos

2018 ◽  
Vol 29 ◽  
pp. 566-578 ◽  
Author(s):  
Francis Turkelboom ◽  
Michael Leone ◽  
Sander Jacobs ◽  
Eszter Kelemen ◽  
Marina García-Llorente ◽  
...  

2011 ◽  
Vol 38 (4) ◽  
pp. 426-434 ◽  
Author(s):  
JASON SCULLION ◽  
CRAIG W. THOMAS ◽  
KRISTINA A. VOGT ◽  
OCTAVIO PÉREZ-MAQUEO ◽  
MILES G. LOGSDON

SUMMARYOver the last decade, hundreds of payments for ecosystem services (PES) programmes have been initiated around the world, but evidence of their environmental benefits remains limited. In this study, two PES programmes operating in the municipality of Coatepec (Mexico) were evaluated to assess their effectiveness in protecting the region's endangered upland forests. Landsat satellite data were analysed to assess changes in forest cover before and after programme implementation using a difference-in-differences estimator. Additionally, surveys and interviews were conducted with local residents and a subset of PES programme participants to evaluate the programmes’ social and environmental impacts, particularly the effect of the programmes on landowner behaviour. The remote-sensing data show that deforestation was substantially lower on properties receiving PES payments compared to properties not enrolled in the programmes, but the programmes did not prevent the net loss of forests within Coatepec. Moreover, the on-site interviews suggest that the payments may have had little impact on deforestation rates, and that other factors contributed to the conservation of forests in PES properties. These findings suggest that risk-targeted payments, robust monitoring and enforcement programmes, and additional conservation initiatives should be included in all PES schemes to ensure environmental effectiveness.


Sign in / Sign up

Export Citation Format

Share Document