scholarly journals Assessing the Capacity of Ecosystems to Supply Ecosystem Services Using Remote Sensing and An Ecosystem Accounting Approach

2018 ◽  
Vol 63 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Leonardo Vargas ◽  
Louise Willemen ◽  
Lars Hein
2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2011 ◽  
Vol 38 (4) ◽  
pp. 426-434 ◽  
Author(s):  
JASON SCULLION ◽  
CRAIG W. THOMAS ◽  
KRISTINA A. VOGT ◽  
OCTAVIO PÉREZ-MAQUEO ◽  
MILES G. LOGSDON

SUMMARYOver the last decade, hundreds of payments for ecosystem services (PES) programmes have been initiated around the world, but evidence of their environmental benefits remains limited. In this study, two PES programmes operating in the municipality of Coatepec (Mexico) were evaluated to assess their effectiveness in protecting the region's endangered upland forests. Landsat satellite data were analysed to assess changes in forest cover before and after programme implementation using a difference-in-differences estimator. Additionally, surveys and interviews were conducted with local residents and a subset of PES programme participants to evaluate the programmes’ social and environmental impacts, particularly the effect of the programmes on landowner behaviour. The remote-sensing data show that deforestation was substantially lower on properties receiving PES payments compared to properties not enrolled in the programmes, but the programmes did not prevent the net loss of forests within Coatepec. Moreover, the on-site interviews suggest that the payments may have had little impact on deforestation rates, and that other factors contributed to the conservation of forests in PES properties. These findings suggest that risk-targeted payments, robust monitoring and enforcement programmes, and additional conservation initiatives should be included in all PES schemes to ensure environmental effectiveness.


2015 ◽  
Vol 12 (3) ◽  
pp. 3477-3526 ◽  
Author(s):  
C. Duku ◽  
H. Rathjens ◽  
S. J. Zwart ◽  
L. Hein

Abstract. Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. In spite of the progress made in mapping and quantifying hydrological ecosystem services, several key issues must be addressed if ecohydrological modelling approaches are to be aligned with ecosystem accounting. They include modelling hydrological ecosystem services with adequate spatiotemporal detail and accuracy at aggregated scales to support ecosystem accounting, distinguishing between service capacity and service flow, and linking ecohydrological processes to the supply of dependent hydrological ecosystem services. We present a spatially explicit approach, which is consistent with ecosystem accounting, for mapping and quantifying service capacity and service flow of multiple hydrological ecosystem services. A grid-based setup of a modified Soil Water and Assessment Tool (SWAT), SWAT Landscape, is first used to simulate the watershed ecohydrology. Model outputs are then post-processed to map and quantify hydrological ecosystem services and to set up biophysical ecosystem accounts. Trend analysis statistical tests are conducted on service capacity accounts to track changes in the potential to provide service flows. Ecohydrological modelling to support ecosystem accounting requires appropriate decisions regarding model process inclusion, physical and mathematical representation, spatial heterogeneity, temporal resolution, and model accuracy. We demonstrate this approach in the Upper Ouémé watershed in Benin. Our analyses show that integrating hydrological ecosystem services in an ecosystem accounting framework provides relevant information on ecosystems and hydrological ecosystem services at appropriate scales suitable for decision-making. Our analyses further identify priority areas important for maintaining hydrological ecosystem services as well as trends in hydrological ecosystem services supply over time.


2020 ◽  
Vol 198 ◽  
pp. 04026
Author(s):  
Liyan Wang ◽  
Chao Chen ◽  
Kai Wang

It is an effective method to study the value change of ecological services based on land use and cover change information. This paper analyzed the land use and cover change information in the research area, which is based on the remote sensing images and social statistics data of 2005, 2010, and 2015, and then, quantitative estimation of the ecosystem service value was performed. Yangtze-Huaihe river basin, China is a fragile ecological area, which is selected as the research area. During 2005-2015, the area of cultivated land and construction land was the main land use types in the study area, the land use and cover change in the study area were obvious, which was characterized by the increasing of construction land area and the decreasing of cultivated land area, and the total ecosystem services value in the research area has been decreasing continuously, the value from 34.376 billion yuan in 2005 to 26.161 billion yuan in 2015.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 393
Author(s):  
Pablo Campos ◽  
Alejandro Álvarez ◽  
José L. Oviedo ◽  
Paola Ovando ◽  
Bruno Mesa ◽  
...  

The scientific debate over how to make visible the connections between the standard System of National Accounts (SNA) and its ongoing satellite Environmental Economic Ecosystem Accounting–Experimental Ecosystem Accounting (SEEA–EEA) is a challenge that is still pending. The literature on environmental accounting of agroforestry and silvopastoral landscapes rarely values the multiple ecosystem services of an area, an economic unit (e.g., farm), or a vegetation type (e.g., holm oak—Quercus ilex L.—open woodland). Generally, the literature presents the market value of the products consumed directly or a correction of the latter that reduces their exchange values in order to approximate them to their resource rents. In our previous publications, we have applied and compared our Agroforestry Accounting System (AAS) with the System of National Accounts (SNA), and we refined the latter to avoid the lag between income generation and its accounting in the period in which the product is extracted. These previous publications did not develop experimental applications of the SEEA–EEA with comparisons to the SNA and it being integrated into the AAS. The main novelty of this article is that, for the first time, we present detailed applications and comparisons of our developments of the refined SEEA–EEA and refined SNA with a simplified version of the AAS. The accounting frameworks applied take the production and capital accounts in the process of being updated by the United Nations Statistics Division (UNSD) at the scale of the holm oak open woodlands of Andalusia into account. In this study, we compare three environmental accounting approaches for ecosystem services and environmental income measurements at basic and social prices: our slightly refined standard System of National Accounts (rSNA); our refined, updated and ongoing satellite System of Environmental Economic Accounting–Experimental Ecosystem Accounting (rSEEA–EEA); and our simplified Agroforestry Accounting System (sAAS). We tested them for 15 economic activities in 1408 thousand hectares of the predominantly mixed holm oak open woodland (HOW) land use tiles in the region of Andalusia, Spain. We considered the government institutional sector to be the collective owner of public economic activities, which we incorporated in the rSNA and the sAAS approaches. We discuss consistencies in environmental incomes identified from the results of the three ecosystem accounting frameworks applied to the HOW. The discrepancies in the measurement of ecosystem services of the government institutional sector between the rSEEA–EEA and the sAAS were due to the omission in the former of the government manufactured costs incurred in the supply of freely consumed public final products. The most notable finding of our comparison is that the ecosystem services and the environmental income results for individual market products offered the same values, whichever the ecosystem accounting framework applied. This was not the case with the ecosystem services of public products without market prices, due to the fact that the rSNA estimates these products at production cost and the rSEEA–EEA did not consider the government manufactured production costs and ordinary manufactured net operating margin of government final public product consumption. We also found that, according to modeling of the scheduled management of future biological resources of the HOW, the environmental income shows biological sustainability of the individual nature-based total product consumption.


2020 ◽  
Vol 12 (11) ◽  
pp. 1820
Author(s):  
Raoul Blackman ◽  
Fei Yuan

Urban forests provide ecosystem services; tree canopy cover is the basic quantification of ecosystem services. Ground assessment of the urban forest is limited; with continued refinement, remote sensing can become an essential tool for analyzing the urban forest. This study addresses three research questions that are essential for urban forest management using remote sensing: (1) Can object-based image analysis (OBIA) and non-image classification methods (such as random point-based evaluation) accurately determine urban canopy coverage using high-spatial-resolution aerial images? (2) Is it possible to assess the impact of natural disturbances in addition to other factors (such as urban development) on urban canopy changes in the classification map created by OBIA? (3) How can we use Light Detection and Ranging (LiDAR) data and technology to extract urban canopy metrics accurately and effectively? The urban forest canopy area and location within the City of St Peter, Minnesota (MN) boundary between 1938 and 2019 were defined using both OBIA and random-point-based methods with high-spatial-resolution aerial images. Impacts of natural disasters, such as the 1998 tornado and tree diseases, on the urban canopy cover area, were examined. Finally, LiDAR data was used to determine the height, density, crown area, diameter, and volume of the urban forest canopy. Both OBIA and random-point methods gave accurate results of canopy coverages. The OBIA is relatively more time-consuming and requires specialist knowledge, whereas the random-point-based method only shows the total coverage of the classes without locational information. Canopy change caused by tornado was discernible in the canopy OBIA-based classification maps while the change due to diseases was undetectable. To accurately exact urban canopy metrics besides tree locations, dense LiDAR point cloud data collected at the leaf-on season as well as algorithms or software developed specifically for urban forest analysis using LiDAR data are needed.


Sign in / Sign up

Export Citation Format

Share Document