scholarly journals Flood risk assessment and cultural heritage impact in the Instituto Superior de Arte (ISA) in Habana.

Author(s):  
Daniele Fabrizio Bignami ◽  
Leonardo Stucchi ◽  
Daniele Bocchiola ◽  
Christian Zecchin ◽  
Davide Del Curto ◽  
...  

<p>Keeping ISA Modern is a project of Fondazione Politecnico di Milano and other partners aimed at planning the conservation of some of the buildings (Schools) of the University of Arts (ISA) of Cuba, built over a former country club, designed by eminent architects of the time (Vittorio Garatti, Roberto Gottardi and Ricardo Porro), and bestowed with the status of UNESCO World Heritage in 2003.</p><p>Most of the Schools are currently unusable, also due to damages caused by frequent floods from the surrounding Rio Quibù river, and they need urgent restoration if they are to be used. Personnel of Politecnico di Milano carried out a field survey on the Rio Quibù during 2019, and also based upon information from the Cuban National Institute of Hydraulic Resources (INRH) they studied established flood risk for ISA.</p><p>Here, we built a high-resolution digital terrain model (DTM) of the park where Schools are located, using laser scanner data, and previously georeferenced points. Using field measurements taken in June 2019 we were able to assess geometry (included bridges), slope and roughness coefficients of the main channel of the Quibù river, influence of the sea level. Then using as input critical discharge data provided by INRH we evaluated flood area and flood volume for 4 representative return periods (5, 20, 50, 100 years).</p><p>The most impacted building is the School of Ballet, located within a narrow meander of Rio Quibù, immediately upstream of a narrow bridge, clogging largely during floods, only 1 km far from the sea, and with drainage system unable to discharge storm water.</p><p>Given the high required cost, a partially collapsed wall originally partially protecting the School of Ballet was not rebuilt, and we are now exploring flood mitigation strategy which are cheaper, and feasible from the point of view of compatibility with the historical and architectural value of the building.</p>

2018 ◽  
Vol 39 (1) ◽  
pp. 17-26
Author(s):  
Faiza hassainia Bouzahar ◽  
Lahbaci Ouerdachi ◽  
Mahdi Keblouti ◽  
Akram Seddiki

AbstractThe study of flood risk involves the knowledge of the spatial variability in the characteristics of the vegetation cover, terrain, climate and changes induced by the intervention of humans in watersheds. The increased needs of the actors in land management mean that static maps no longer meet the requirements of scientists and decision-makers. Access is needed to the data, methods and tools to produce complex maps in response to the different stages of risk evaluation and response. The availability of very high spatial resolution remote sensing data (VHSR) and digital terrain model (DTM) make it possible to detect objects close to human size and, therefore, is of interest for studying anthropogenic activities. The development of new methods and knowledge using detailed spatial data, coupled with the use of GIS, naturally becomes beneficial to the risks analysis. Indeed, the extraction of information from specific processes, such as vegetation indices, can be used as variables such as water heights, flow velocities, flow rates and submersion to predict the potential consequences of a flood. The functionalities of GIS for cartographic overlay and multi-criteria spatial analysis make it possible to identify the flood zones according to the level of risk from the flood, thus making it a useful decision-making tool.This study was carried out on the territory of watersheds in the Annaba region, East of Algeria. The choice was guided by the availability of data (satellites images, maps, hydrology, etc.) and hydrological specificities (proximity to an urban area). The adopted model is divided into two parts. The first part is to establish a methodology for the preservation of wetland biodiversity and the protection of urban areas against floods. Thanks to the multi-criteria spatial analysis and the functionalities of the GIS, we established a flood risk map for the watershed defined above. The result was satisfactory compared with the field reality. The second part of the model consisted of the integration of cadastral information with the flood risk map obtained in the first part of our research.The primary objective of this mapping is to contribute to the development of flood risk management plans (in the sense of risk reduction). The mapping stage also provides quantitative elements to more accurately assess the vulnerability of a territory.


Author(s):  
Maxim A. Altyntsev ◽  
◽  
Hamid Majid Saber Karkokli ◽  

The result of laser scanning is an array of laser points. The generation of a single point cloud in a given coordinate system is carried out during the registration process at the stage of preliminary field data processing. At this stage it is also often necessary to filter the data. Laser points with an erroneous position are eliminated during the data filleting. The number of erroneous laser points is determined by the of the laser scanner characteristics, surveyed area peculiarities and weather conditions. The devel-opment of methods and algorithms for filtering laser scanning data is carried out based on the analysis of the laser point spatial position and a certain set of additional characteristics, such as intensity value, echo signal, color value. The technique of mobile laser scanning data filtering for the territory of the road passing among the forest and close to individual industrial facilities and building. The main goal of the proposed filtration technique is to obtain data for automatic generation of an accurate digital terrain model. The filtration technique was developed for data acquired under the least favorable con-ditions – in wet weather. Accuracy estimation of generating digital terrain model based on filtered data was carried out.


Author(s):  
R. Rakesh ◽  
Ashay D Souza ◽  
Sudipta Chattaraj

Watershed characterization is the first step in the sustainable management of    watershed resources. Morphometric analysis of a watershed using Digital Elevation Model (DEM) provides a quantitative description of the drainage system which is an important aspect   of the characterization of watersheds. The study was conducted in Nilona micro-watershed covering an area of 1297.35 ha in Darwha tehsil of Yavatmal district, Maharashtra. The terrain attributes and drainage configuration were derived from the Cartosat-1 data, 10m resolution Digital Terrain Model (DTM) using ArcGIS. Surface soil samples of 118 locations were collected from grid points located at regular interval of 325 m. The digital terrain analysis  showed that slope varies from 0 to 45.9 percent, with a mean value of 4.5%. Most of the area of Nilona micro-watershed was classified as gentle sloping. Profile curvature   varies from -5.1 to 4.6 m m-1, respectively indicating the coexistence of erosive as well  as depositional landforms. Overall, the study documents the utility of   site-specific modeling and geo-statistical interpolation based predictive mapping for watershed planning.


2017 ◽  
Vol 39 (3) ◽  
pp. 245 ◽  
Author(s):  
Ilda Entraigas ◽  
Natalia Vercelli ◽  
Guadalupe Ares ◽  
Marcelo Varni ◽  
Sofía Zeme

From a hydrological point of view, the characteristic of the water behaviour in catchments so depressed as the Azul creek basin (centre of Buenos Aires province, Argentina) is water accumulation above the land surface. Thus, water on the ground does not have a single runoff direction, but moves in a disorderly, indefinite and unpredictable way. Considering that periodic floods are a typical disturbance of the region, the objective of this study is to analyse, under field conditions, the transformative effect of prolonged flooding on floristic composition, taking into account the different vegetation patches and their relative position over the relief, the chemical characteristics and the groundwater fluctuation, and some edaphic properties in each site. Vegetation samplings were performed during three consecutive springs, when the grassland was on different hydrological conditions due to very different rainfall precedent histories. A digital terrain model of the study area was built and a flow accumulation map was created from it. Pits were dug to describe edaphic variables and shallow wells were drilled for monitoring the groundwater characteristics. Flooding, in relation with surface and groundwater dynamics and soil characteristics, is the factor that determines and promotes the differentiation among sites that are relatively close, contiguous and even topographically in almost identical positions. So, some patches of vegetation get their differentiation through the limiting conditions of their soils, while others receive greater influence from the hydrodynamics to which they are subject. Thus, in this study it becomes evident how certain stands are floristically homogenised or differentiated over time according to their flooding conditions and, hence, according to the area from which they receive surface and groundwater flow. Also, results corroborate the way the water regime determines the structure and heterogeneity of plant communities in such environments.


2021 ◽  
Vol 12 (25) ◽  
pp. 158
Author(s):  
Pablo Aparicio-Resco ◽  
Alejandro García Álvarez-Busto ◽  
Iván Muñiz-López ◽  
Noelia Fernández-Calderón

<p class="VARKeywords">The virtual reconstruction of a site is the mirror in which the archaeological research process is reflected, with all its uncertainties and certainties, generating a space for reflection on the lost materiality while the vestige itself is reconfigured into a didactic and social resource. Here we present the result of the three-dimensional (3D) reconstruction of the archaeological structures preserved in the Peñón de Raíces, in Castrillón (Asturias), which correspond to the ruins of the castle of Gauzón, a famous fortification of the Asturian kings in which La Cruz de la Victoria was made in 908.</p><p>The article begins with an introduction and a first part (Section 2) dedicated to the explanation of the site itself from an archaeological and historical point of view. We believe that this analysis should be the basis of any scientific virtual reconstruction. The virtual reconstruction presented here is dated to the 9-10th centuries and corresponds to the fortification built in the time of the Asturian kings. We offer a detailed analysis of the morphological and architectural components that have been documented in this defensive settlement in the light of archaeological research, and that provide the main foundations for the infographic reconstruction.</p><p>In the second part of the article (Section 3), we analyse the specific sources of historical and archaeological information that support the reconstruction and serve as a reference for it. The historical-archaeological sources used for the representation, for example, of the walls and the palaeoenvironmental environment, are detailed. Likewise, we comment on the process of discussion of the different hypotheses that, finally, lead to the presented result. It is important to note that without this discussion process it is not possible to produce a sound and solid proposal over time.</p><p>In the third part (Section 4), we show the result of the virtual reconstruction with a series of images. To obtain the virtual reconstruction presented in this article, the Blender Geographic Information System (GIS) addon has been used, which allows us to have a digital terrain model (DTM) on our 3D desktop easily so that we can begin to carry out the work from it. The archaeological planimetries were arranged on it and, based on all this information, the modelling process began. In the first place, basic modelling of volumes was carried out that served to raise the first sketches and, on them, to continue discussing the reconstructive hypotheses. Little by little the geometry of the virtual reconstruction was detailed and the castle took shape. The next step was to carry out texturing in a photorealistic way, for which it was decided to use Substance Painter software. We continued with the texturing and addition of details of the surrounding terrain using particle systems, which has been one of the most complex phases to carry out given the level of realism that we set ourselves as a goal. Later, other types of minor details were added: objects, characters and animals, which help to better understand the context. Finally, the final renderings are carried out and their post-processing is developed in Adobe Photoshop, for which matte painting techniques were used that merge 3D images with photographs and digital drawing.</p><p>Our interest was to carry out scientific graphic work, for which we have emphasized the importance of using the scale depicting historical/archaeological evidence for virtual reconstructions, a tool that allows us to ensure the principles of authenticity and scientific transparency of any virtual reconstruction (Aparicio et al., 2016). In this case, thanks to this tool, it is clear that the highest level of evidence is found in the castle itself excavated in the acropolis, while the town and the surrounding palisade clearly show a lower level of evidence. We hope that subsequent excavations in this area will allow us to review the reconstruction and thus also reflect a higher level of evidence in this area.</p><p>We believe that the work presented here constitutes a good example of the use of virtual scientific reconstruction for the development and consolidation of new hypotheses not only reconstructive but also interpretive of an archaeological site. Furthermore, the result presented here demonstrates the power of this graphic resource for the dissemination of historical-archaeological knowledge, a fundamental objective when carrying out any scientific work.</p><p><strong>Highlights:</strong></p><ul><li><p>Reconstrucción infográfica de una de las principales fortificaciones del reino de Asturias (s. VIII-X), a partir de la evidencia material documentada en las campañas de excavación arqueológica realizadas en el yacimiento.</p></li><li><p>Desarrollo de hipótesis reconstructivas de arquitectura militar altomedieval arruinada mediante la interpretación de vestigios arqueológicos aplicando un enfoque multidisciplinar.</p></li><li><p>Ejemplo de uso de la escala de evidencia histórico-arqueológica y de las unidades reconstructivas (UR) como instrumentos que permiten garantizar los principios de autenticidad y transparencia científica.</p></li></ul>


2020 ◽  
Vol 13 (1) ◽  
pp. 195-199
Author(s):  
Vyacheslav V. Dolotov ◽  
Yuri N. Goryachkin ◽  
Andrey V. Dolotov

The paper gives results of the digitization of the status and spatial position of a cliff in the Western Crimea coastal zone. The modern equipment and methods accelerate the survey from the time perspective and improve the quality of the outcomes; namely a high precision GNSS receiver in RTK mode and PHANTOM-3 PRO copter. The digital terrain model was generated with used the Agisoft Photoscan software. The paper shows that the precision of the mathematical model of the relief constructed by aerial photographs provides more detailed data in comparison to those obtained in the field observations. Furthermore, aerial photography makes it possible to calculate the number of spatial characteristics of hazardous for surveying and latent natural objects out of reach for an on-location investigation. As a result, the very detailed data about current condition of dangerous cliff were obtained. The paper also evaluates the linear and volumetric characteristics of cleavages that are prone to collapse.


Author(s):  
K. Bakuła ◽  
W. Ostrowski ◽  
M. Szender ◽  
W. Plutecki ◽  
A. Salach ◽  
...  

This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.


2020 ◽  
Vol 12 (17) ◽  
pp. 2827 ◽  
Author(s):  
Ronald Vernimmen ◽  
Aljosja Hooijer ◽  
Maarten Pronk

No accurate global lowland digital terrain model (DTM) exists to date that allows reliable quantification of coastal lowland flood risk, currently and with sea-level rise. We created the first global coastal lowland DTM that is derived from satellite LiDAR data. The global LiDAR lowland DTM (GLL_DTM_v1) at 0.05-degree resolution (~5 × 5 km) is created from ICESat-2 data collected between 14 October 2018 and 13 May 2020. It is accurate within 0.5 m for 83.4% of land area below 10 m above mean sea level (+MSL), with a root-mean-square error (RMSE) value of 0.54 m, compared to three local area DTMs for three major lowland areas: the Everglades, the Netherlands, and the Mekong Delta. This accuracy is far higher than that of four existing global digital elevation models (GDEMs), which are derived from satellite radar data, namely, SRTM90, MERIT, CoastalDEM, and TanDEM-X, that we find to be accurate within 0.5 m for 21.1%, 12.9%, 18.3%, and 37.9% of land below 10 m +MSL, respectively, with corresponding RMSE values of 2.49 m, 1.88 m, 1.54 m, and 1.59 m. Globally, we find 3.23, 2.12, and 1.05 million km2 of land below 10, 5, and 2 m +MSL. The 0.93 million km2 of land below 2 m +MSL identified between 60N and 56S is three times the area indicated by SRTM90 that is currently the GDEM most used in flood risk assessments, confirming that studies to date are likely to have underestimated areas at risk of flooding. Moreover, the new dataset reveals extensive forested land areas below 2 m +MSL in Papua and the Amazon Delta that are largely undetected by existing GDEMs. We conclude that the recent availability of satellite LiDAR data presents a major and much-needed step forward for studies and policies requiring accurate elevation models. GLL_DTM_v1 is available in the public domain, and the resolution will be increased in later versions as more satellite LiDAR data become available.


2015 ◽  
Vol 3 (2) ◽  
pp. 8-11
Author(s):  
Mária Mrázová ◽  

Digital terrain model is applicable for many possibilities related to aerial works by use of photogrammetry or laser scanning of the earth’s surface. For the purpose of this research we consider just laser scanning used for work in difficult mountain terrain. The terrain of the Slovak Republic has many high hills and it signifies more complex flight planning, as laser scanning is usually flown in lower heights than photogrammetry. Moreover, as lower height is above terrain than the overlap between subsequent LIDAR strips is also lower. This situation can also lead towards the negative value in extreme instances. This paper also describes the most effective way for flight planning during laser scanning of mountain terrain by comparison of two different technologies from operational and economical point of view.


2018 ◽  
Vol 18 (2) ◽  
pp. 583-597 ◽  
Author(s):  
Ákos Török ◽  
Árpád Barsi ◽  
Gyula Bögöly ◽  
Tamás Lovas ◽  
Árpád Somogyi ◽  
...  

Abstract. Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE–WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).


Sign in / Sign up

Export Citation Format

Share Document