Investigating the dynamics of Lake Kivu with quantum technology

Author(s):  
Maximilian Schmidt ◽  
David Wachs ◽  
Yannis Arck ◽  
Fabian Bärenbold ◽  
Lisa Ringena ◽  
...  

<p>Lake Kivu, located on the border of Rwanda and the Democratic Republic of Congo, is a very peculiar lake in several aspects. The meromictic lake shows a vertical stratification dominated by high salt concentrations of up to 6 ‰ resulting in a very thick monimolimnion of 420 m (max depth ~492 m). This extremely large non mixing part of the lake functions as a reservoir for very high concentrations of volcanogenic gases like methane and carbon dioxide (up to 20 and 100 mmol/l respectively) resulting in a growing hazard for millions of local residents. Our aim of this study is to get insights into the hydrological dynamics, solute transport and the lakes mixing behavior utilizing radiometric dating with <sup>39</sup>Ar.</p><p>The noble gas isotope <sup>39</sup>Ar (t<sub>1/2</sub> = 269 a) covers a unique time span for studying the dynamics of aquatic and glacial systems of the last millennium. Although this tracer has been acknowledged for decades, studies so far are limited by its low abundance, little radioactivity and hence huge required sample sizes (~1000 L water). Until today environmental routine measurements are mainly confined to groundwater reservoirs, where nearly unlimited sampling is possible. The application of techniques from atomic physics using a magneto optical atom trap (MOT) solves the problem by reducing sample volume requirements by several orders of magnitude. The problem of the very low isotopic abundance of 10<sup>-16</sup> is resolved by resonant multi-photon scattering of <sup>39</sup>Ar in the MOT. This technique named Argon Trap Trace Analysis with its very low minimal sample size of 0.5 cm³STP pure argon enables easy sample handling in the field as well as common sampling procedures like Niskin bottles for aquatic systems, drill core sampling for glacial systems or as in the case of Lake Kivu spray chamber gas sampling in remote places. It is thus a door opener for new geophysical research fields that were excluded from radio-argon dating so far.</p><p>Here we present our most recent results of sampling campaigns in 2018 and 2019 using samples of about 25 – 40 L gas-water mixtures corresponding to 0.5 – 10 cm³STP pure argon showing surprisingly high ages for the lake water.</p>

2021 ◽  
Author(s):  
Florian Ritterbusch ◽  
Jinho Ahn ◽  
Ji-Qiang Gu ◽  
Wei Jiang ◽  
Giyoon Lee ◽  
...  

<p>Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods cannot be readily applied. The noble-gas radioisotopes <sup>81</sup>Kr and <sup>39</sup>Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. <sup>81</sup>Kr (half-life 229 ka) covers the time span of 50-1300 ka, which is particularly relevant for polar ice cores, whereas <sup>39</sup>Ar (half-life 269 a) with a dating range of 50-1800 a is suitable for high mountain glaciers. For a long time the use of <sup>81</sup>Kr and <sup>39</sup>Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size.</p><p>Here, we present <sup>81</sup>Kr and <sup>39</sup>Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for <sup>81</sup>Kr and 2-5 kg for <sup>39</sup>Ar. Recent advances in further decreasing the sample size and increasing the dating precision will be discussed. Current studies include <sup>81</sup>Kr dating in shallow ice cores from the Larsen Blue ice area, East Antarctica, in order to retrieve climate signals from the last glacial termination. Moreover, an <sup>39</sup>Ar profile from a central Tibetan ice core has been obtained in combination with layer counting based on isotopic and visual stratigraphic signals. The presented studies demonstrate how <sup>81</sup>Kr and <sup>39</sup>Ar can constrain the age range of ice cores and complement other methods in developing an ice core chronology.</p><p> </p><p>[1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)<br>[2] C. Buizert, Radiometric <sup>81</sup>Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, <strong>111</strong>, 6876, (2014)</p><p>[3] L. Tian, <sup>81</sup>Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)</p><p>http://atta.ustc.edu.cn</p>


2015 ◽  
Vol 9 (3) ◽  
pp. 1678 ◽  
Author(s):  
M Bagalwa ◽  
JGM Majaliwa ◽  
F Kansiime ◽  
S Bashwira ◽  
M Tenywa ◽  
...  

2020 ◽  
Vol 44 (5) ◽  
pp. 422-439 ◽  
Author(s):  
Jirair Gevorkyan ◽  
Megan Wong ◽  
Sue Pearring ◽  
Luke N Rodda

Abstract Systematic toxicological approaches that employ both ideology changes and improvements in instrumentation and sample extraction allow for improved toxicology testing efficiency through lower sensitivities, higher specificity and minimized resource use. Historically, the San Francisco Office of the Chief Medical Examiner relied heavily on a gas chromatography mass spectrometry (GC–MS) testing regime, comprised of individual drug-class confirmation and quantitation assays. Traditional methods utilizing GC–MS typically require iterations of testing, exhausting sample volume, and hindering productivity and turnaround times, particularly for polypharmacy cases frequently seen in modern postmortem toxicology. The method described here consolidated the scope of seven legacy methods into a single liquid chromatography tandem mass spectrometry (LC–MS/MS) method for better sensitivity, higher throughput, minimal sample consumption for the quantitation of drugs of abuse and improved quality assurance with the incorporation of smart, automated processing. About 100 μL of blood or urine were rapidly extracted using a simple acetonitrile protein crash and subsequent in-vial filtration and injected on to an LC–MS-MS system. The developed method was fully validated to SWGTOX and international guidelines and incorporated 55 analytes along with a customized query that facilitates rapid and consistent application of acceptability criteria for data processing and review. Applicability was demonstrated with the analysis of 1,389 samples (858 blood and 531 urine) where at least 41% of positive results may have been missed due to their decreased sensitivity and 11% of results were not within the scope of the previous analytical methods estimated. On average, cases in this study would have previously required three distinct GC–MS assays, 3 mL of blood, and upwards of 30 h of active staff time. The described LC–MS-MS analytical approach has mitigated the need to perform multiple assays, utilized only 0.1 mL of sample, significantly reduced analyst work time, incorporated 10 additional analytes and allowed for a more comprehensive testing regime to better inform cause of death determinations.


2020 ◽  
Author(s):  
Florian Ritterbusch ◽  
Yan-Qing Chu ◽  
Ilaria Crotti ◽  
Xi-Ze Dong ◽  
Ji-Qiang Gu ◽  
...  

<p>Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods are not readily applied. The noble gas radioisotopes <sup>81</sup>Kr and <sup>39</sup>Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. <sup>81</sup>Kr (half-life 229 ka) covers the time span from 50-1300 ka, which is particularly relevant for polar ice cores, whereas <sup>39</sup>Ar (half-life 269 a) with a dating range of 50-1400 a is suitable for high mountain glaciers. For a long time the use of <sup>81</sup>Kr and <sup>39</sup>Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size. Here, we report on <sup>81</sup>Kr and <sup>39</sup>Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for <sup>81</sup>Kr and 2-5 kg for <sup>39</sup>Ar. Among others, we measured <sup>81</sup>Kr in the lower section of Taldice ice core, which is difficult to date by conventional methods, and in the meteoric bottom of the Vostok ice core in comparison with an age scale derived from hydrate growth. Moreover, we have obtained an <sup>39</sup>Ar profile for an ice core from central Tibet in combination with a timescale constructed by layer counting. The presented studies demonstrate how the obtained <sup>81</sup>Kr and <sup>39</sup>Ar ages can complement other methods in developing an ice core chronology, especially for the bottom part.</p><p>[1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)</p><p>[2] C. Buizert, Radiometric <sup>81</sup>Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, <strong>111</strong>, 6876, (2014)</p><p>[3] L. Tian, <sup>81</sup>Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)</p><p>[4] http://atta.ustc.edu.cn</p>


Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4443-4447 ◽  
Author(s):  
Daniel J. Haisenleder ◽  
Aleisha H. Schoenfelder ◽  
Elizabeth S. Marcinko ◽  
Lisa M. Geddis ◽  
John C. Marshall

The University of Virginia Center for Research in Reproduction Ligand Core performed an evaluation of nine commercial estradiol (E2) immunoassays for use with mouse serum. The evaluation had two components. 1) Recovery Studies: a mouse pool was spiked with E2 concentrations across the assay range, and percent recovery and parallelism to the assay standard curve were determined. 2) Correlation Studies: serum pools were collected from intact females, ovariectomized (OVX) and OVX-E2 treated mice and E2 assayed, then measured by gas chromatography/tandem mass spectrometry (GC/MSMS) for comparison to a gold standard method. Recovery results showed that E2 recovery from spiked mouse pools varied greatly (from <18% to >640%) among kits tested. However, three kits (DiaSorin Radioimmunoassay, Siemens Double Antibody RIA, and CalBiotech Enzyme Immunoassay) showed reasonable recoveries and parallelism. Data collected from the Correlation Study showed that values from intact, OVX and OVX-E2-treated mouse pools varied by several fold vs. GC/MSMS for most of the kits tested. The DiaSorin RIA and CalBiotech Enzyme Immunoassay Kits showed the best correlation to GC/MSMS. Unfortunately, while this evaluation was ongoing, the DiaSorin Kit was discontinued. In summary, the CalBiotech Kit was the only available assay tested that demonstrated good E2 parallelism to the assay standard curve and accuracy vs. a gold standard method (i.e. GC/MSMS). Also of note, the CalBiotech assay is sensitive and requires minimal sample volume. Therefore, based on these findings the CalBiotech E2 assay has been implemented for use in mouse serum samples within the Ligand Core.


2018 ◽  
Vol 33 (3) ◽  
pp. 395-403 ◽  
Author(s):  
Gabriella Mankovskii ◽  
Ana Pejović-Milić

A small (5 μl) sample volume and minimal sample preparation steps are required to accurately quantify AuNP uptake in cancer cells.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 216 ◽  
Author(s):  
Yusuke Sato ◽  
Masahiro Takinoue

The creation of artificial cells is an immensely challenging task in science. Artificial cells contribute to revealing the mechanisms of biological systems and deepening our understanding of them. The progress of versatile biological research fields has clarified many biological phenomena, and various artificial cell models have been proposed in these fields. Microfluidics provides useful technologies for the study of artificial cells because it allows the fabrication of cell-like compartments, including water-in-oil emulsions and giant unilamellar vesicles. Furthermore, microfluidics also allows the mimicry of cellular functions with chip devices based on sophisticated chamber design. In this review, we describe contributions of microfluidics to the study of artificial cells. Although typical microfluidic methods are useful for the creation of artificial-cell compartments, recent methods provide further benefits, including low-cost fabrication and a reduction of the sample volume. Microfluidics also allows us to create multi-compartments, compartments with artificial organelles, and on-chip artificial cells. We discuss these topics and the future perspective of microfluidics for the study of artificial cells and molecular robotics.


Talanta ◽  
2013 ◽  
Vol 116 ◽  
pp. 912-918 ◽  
Author(s):  
D. Thomas ◽  
M. Eberle ◽  
S. Schiffmann ◽  
D.D. Zhang ◽  
G. Geisslinger ◽  
...  

2021 ◽  
Author(s):  
Olivier Beyssac

<p>Over the last two decades, Raman microspectroscopy has known a spectacular development in various research fields of petrology opening new avenues for studies in sedimentology, metamorphism or magmatism and cosmochemistry. This has been made possible thanks to major technological improvements (e.g., Raman hyperspectral mapping) and a better theoretical approach (e.g., data processing and interpretation). Raman spectra are actually sensitive to even minor (chemical or structural) perturbations within chemical bonds in (even amorphous) solids, liquids, and gases. They can, thus, help identify, characterize, and differentiate between individual minerals, fluid inclusions, glasses, carbonaceous materials, solid solution phases, strain in minerals, and dissolved species in multi-component solutions. Such sensitivity and versatility make Raman a unique tool for petrology. Yet, it relies on a weak and subtle signal and a cautious approach is required to avoid pitfalls during the analysis and/or the interpretation of data. Some recent scientific milestones will be presented and discussed in various fields like geothermobarometry of metamorphic rocks, geochemistry of meteorites, speciation of deep fluids involved in fluid-rock interactions or the characterization of organic/mineral assemblages of astrobiological interest. For the particular c       ase of petrology, Raman microspectroscopy has the immense advantage that it requires minimal sample preparation, thus it can be performed in situ preserving the original microtexture of the sample with a rather high spatial resolution for analysis, typically 1 mm at 532 nm for modern systems. Therefore, this technique is now increasingly used to study poorly crystalline and chemically heterogeneous materials involved for instance in geochemical processes occuring at Earth surface. But it faces numerous challenges due to the reactivity of such phases making them fragile under the laser beam, or due to the quasi-systematic presence of intense backgrounds in the spectra overwhelming the Raman signal. The source of this background can be multiple as it can be observed with fine-grained samples and/or it can be generated by the presence of luminescence/fluorescence emission centers. More generally such background is not well understood although it is a major issue for Raman spectroscopy in many petrological applications. However, there too, recent technological developments, sometimes based on old ideas, offer new possibilities to investigate safely and accurately such materials : time-resolved spectroscopy and surface-enhanced Raman spectroscopy (SERS) will be presented as well as some applications for petrology of complex samples.</p>


Sign in / Sign up

Export Citation Format

Share Document