Relationships between aboveground and belowground biomass stock – a case study from mountain area temperate forests in the northern Carpathians

Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Dariusz Struzik ◽  
Grzegorz Smułek ◽  
...  

<p>The content of organic carbon in forest is partitioned between organic carbon accumulated in aboveground biomass (AGB) and belowground biomass (BGB) and is impacted by various natural and human factors. Growing interest in estimates of global biomass (and organic carbon) pools require research on a local scale in the context of potential environmental factors affecting their spatial distribution. Therefore, our aim of the research was to both derive and evaluate the relationship between aboveground biomass consisting mainly of European beech (Fagus sylvatica L.), spruce (Picea abies L. Karst) and fir (Abies alba Mill.) and BGB with particular emphasis on fine root biomass (FRB) as the most dynamic part of the root system and soil organic matter stock (SOM). Data were collected at 32 national forest inventory plots in mountainous temperate forests with different history of forest management located across the Carpathian range in Poland. All study plots were characterized with very similar soil properties (Cambisols). Moreover, numerous environmental factors affecting biomass distribution were taken under consideration. The largest aboveground biomass occurred in beech-dominated stands (~40 Mg ha<sup>-1</sup> to over ~ 440 Mg ha<sup>-1</sup>). In the sampled depth layer (0-40 cm) the highest SOM stock was identified in soils under beech-dominated stands (median ~158 Mg ha-1). FRB was the highest under fir-dominated stands (median ~3.7 Mg ha-1). The amount of SOM and FRB differed also in the analyzed soil depth layers (10 cm interval up to 40 cm) reaching mostly the highest values at soil depths of 0-10 cm. The highest amount of biomass (both aboveground and the belowground) has been identified in beech-dominated forests. We examined relationships between AGB, FRB, and SOM, but were not able to identify clear significant correlations based only on vegetation parameters. Derived results illustrate the complexity of identifying significant relationships between aboveground and belowground biomass stocks. Employing the same models may be an erroneous strategy for different study sites because of local environmental factors that strongly determine aboveground and belowground biomass stock. Accordingly, creating biomass and carbon models at larger scales in northern Carpathians based on forest aboveground data may cause an over- or underestimation due to the significant impact of both abiotic and biotic factors. </p><p> </p><p>This research study was funded by the Polish National Science Centre (RS4FOR Project: Forest change detection and monitoring using passive and active remote sensing data (No. 2015/19/B/ST10/02127) and via Project No. UJ/IGiGP/K/DSC/004779.</p>

2017 ◽  
Vol 39 (2) ◽  
pp. 169 ◽  
Author(s):  
Heyun Wang ◽  
Zhi Dong ◽  
Jianying Guo ◽  
Hongli Li ◽  
Jinrong Li ◽  
...  

Grassland ecosystems, an important component of the terrestrial environment, play an essential role in the global carbon cycle and balance. We considered four different grazing intensities on a Stipa breviflora desert steppe: heavy grazing (HG), moderate grazing (MG), light grazing (LG), and an area fenced to exclude livestock grazing as the Control (CK). The analyses of the aboveground biomass, litter, belowground biomass, soil organic carbon and soil light fraction organic carbon were utilised to study the organic carbon stock characteristics in the S. breviflora desert steppe under different grazing intensities. This is important to reveal the mechanisms of grazing impact on carbon processes in the desert steppe, and can provide a theoretical basis for conservation and utilisation of grassland resources. Results showed that the carbon stock was 11.98–44.51 g m–2 in aboveground biomass, 10.43–36.12 g m–2 in plant litters, and 502.30–804.31 g m–2 in belowground biomass (0–40 cm). It was significantly higher in CK than in MG and HG. The carbon stock at 0–40-cm soil depth was 7817.43–9694.16 g m–2, and it was significantly higher in LG than in CK and HG. The total carbon stock in the vegetation-soil system was 8342.14–10494.80 g m–2 under different grazing intensities, with the largest value in LG, followed by MG, CK, and HG. About 90.54–93.71% of the total carbon in grassland ecosystem was reserved in soil. The LG and MG intensities were beneficial to the accumulation of soil organic carbon stock. The soil light fraction organic carbon stock was 484.20–654.62 g m–2 and was the highest under LG intensity. The LG and MG intensities were beneficial for soil nutrient accumulation in the desert steppe.


2018 ◽  
Vol 36 ◽  
pp. 97-111
Author(s):  
Małgorzata Kijowska-Strugała ◽  
Krzysztof Kiszka

The aim of this study was to examine the effects of various environmental factors on splash erosion based on the funnel method under natural conditions. The relationship between splash and wash erosion were also studied. The intermediate timescale study (2012–2016, from May to October) was conducted in the Western Polish Carpathians where Inceptisols predominate. The splash erosion rate (kg m−2) was variable and showed a strong correlation with environmental factors, including rainfall parameters, land use (black fallow, meadow), slope gradient (0°, 11°), and also the particle size of soil and usage time (organic matter content, OM). The splash erosion rate on the slope with black fallow was 95 times higher than in the meadow and up to 20 times higher than in flat area. The average downslope splash erosion was 75% higher than the upslope splash erosion, and the soil particles were detached to maximum heights of 50 cm (downslope). There was a positive correlation between splash erosion and wash and a negative correlation between splash erosion and OM.


2021 ◽  
Vol 921 (1) ◽  
pp. 012011
Author(s):  
Nahdia ◽  
S A Paembonan ◽  
Nasaruddin

Abstract This study aimed to determine cocoa carbon stocks based on the conditions of cocoa plantations in Tomoni Beringin Jaya Village, East Luwu, South Sulawesi, Indonesia. Carbon stocks were estimated from aboveground and belowground biomass using an allometric methodology. Sample sites were cocoa plantations; sampling intensity was 30% of the land planted with cocoa for 5 years (n = 214), 10 years (n=229) and 15 years (n=329), soil sampling disturb (measure soil organic carbon), un disturb (measure bulk soil bulk density) and soil bulk density at depth 0-10 cm and 10-20 cm. Carbon stock cocoa aboveground biomass at the age of 5 years (M45) was 1.89 ton C ha-1 and belowground biomass was 0.56 ton C ha-1 with proportion 77.19%:22.81%. Carbon stock cocoa aboveground biomass at the age of 10 year (BR25) was 3.66 ton C ha-1 and belowground biomass 1.01 ton C ha-1 with a proportion 78.37%:21.63%. Carbon stock cocoa aboveground biomass at 15 year (BR25) was 4.58 ton C ha-1 and belowground biomass of 1.21 ton C ha-1 with a proportion 79.07%:20.93%. Cocoa carbon stock at 5 year, 10 year, and 15 year respectively increased, nevertheless mean annual carbon stock cocoa decreased in 5 years cocoa aboveground biomass was 0.37 ton C ha-1 and belowground biomass 0.11 tonCa-1. Carbon stock cocoa 10 year aboveground biomass 0.36 ton C ha-1 and belowground biomass 0.10 ton C ha-1. Carbon stock cocoa 15 year aboveground biomass 0.30 ton C ha-1 and belowground biomass 0.08 ton C ha-1. Soil organic carbon showed dynamic under different year cocoa plantation. Soil organic carbon in cocoa plantation age 5 year was 0.031 tonCha-1, cocoa plantation age 10 year was 0.034 ton C ha-1, and cocoa plantation age 15 year was 0.043 ton C ha-1.


Biologia ◽  
2010 ◽  
Vol 65 (2) ◽  
Author(s):  
Maria Dinka ◽  
Edit Ágoston-Szabó ◽  
Peter Szeglet

AbstractThe production of vigorous and die-back sites of the same reed belt and nutrient content of reed were studied to detect possible causes of reed die-back. Shoot density, total aboveground and belowground biomass and their C, N, P and S contents were also determined.Samples were collected from three vigorous and three die-back sites of Lake Fertő/Neusiedler See in 1996 and 1997. Reed stands were compared when the biomass was maximal in both years. Reed shoots were significantly (p = 5%) shorter, thinner and had less internodes at the die-back sites than at the vigorous sites, where the aboveground biomass was 1.5–2.0 times and the leaf area index (LAI) 1.7–2.5 times higher. The belowground biomass was nearly the same at the vigorous and die-back sites. The amount of decaying belowground biomass was less than 50% of the total belowground biomass at the vigorous sites, while it reached 75% at the die-back sites.Different N, C, P and S concentrations were found in the reed organs studied (leaves, culm, rhizome and roots). The N concentration in leaves, culm and rhizome was higher at the die-back sites, where the P concentration was the lowest. There were no significant differences in the S concentration of the examined reed organs as comparing the vigorous and degraded reeds. The C concentration of culms were higher, while that of the living rhizomes were lower at healthy than at the die-back sites. The N, P, C and S standing stocks in the aboveground biomass were significantly lower at the die-back sites than at the vigorous sites. In the belowground biomass the P standing stock was significantly lower, while the N standing stock was significantly higher at the die-back sites than at the vigorous sites.Not more than 17% of the total dry mass m−2, 17% of the C, 24% of the N, 14% of the S and 27% of the P standing stock was found in the aboveground phytomass produced in the actual year.


2008 ◽  
Vol 54 (2) ◽  
pp. 205-222 ◽  
Author(s):  
Changting Wang ◽  
Ruijun Long ◽  
Qilan Wang ◽  
Zengchun Jing ◽  
Yangong Du ◽  
...  

We investigated the effects of soil resources on species composition, plant diversity, and plant biomass in four alpine Kobresia meadow communities. Species diversity was lower in the Kobresia tibetica swamp meadow community than in the other three communities, but this community was characterized by the highest aboveground and belowground biomass and soil nutrients. Aboveground biomass was positively correlated with soil organic matter and soil total nitrogen in all four alpine meadow communities. The proportion of light fraction organic carbon (LFOC) was positively correlated with soil total organic carbon in all types of grassland. In alpine meadows, belowground biomass mostly occurred at 0-10 cm soil, as did soil nutrients. Community differences in plant species composition were reflected in biomass distribution. The highest total biomass (13,759 ± 497 g/m2) including above- and belowground biomass appeared in the sedge-dominated Kobresia tibetica swamp meadow community. Intermediate biomass (3,235 ± 142 g/m2, 2,645 ± 16 g/m2) was found in the Kobresia pygmaea swamp meadow and Potentilla fruticosa shrubs meadow community, dominated by forbs, sedges, and woody plants. The lowest biomass (2,433 ± 162 g/m2) was observed in the Kobresia humilis meadow, mainly dominated by forbs and grasses. The results indicated that fertility of the vegetation caused a decrease in plant species, increase in plant biomass, and also changes in species composition. Species traits (such as ability to respond to higher nutrient levels) as well as competitive interaction may determine ecosystem function (e.g., productivity). Plants with higher competitive ability would then have access to a greater proportion of available resources, leading to increased total resource uptake by roots, lower nutrient losses from the ecosystems, and increased aboveground and belowground biomass. The distribution of aboveground and belowground biomass is largely influenced by the plant species and growth forms within spatial gradients in soil moisture and edaphic conditions.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4183 ◽  
Author(s):  
Haiyan Ren ◽  
Tao Gao ◽  
Jian Hu ◽  
Gaowen Yang

Understanding the factors that alter competitive interactions and coexistence between plants is a key issue in ecological research. A pot experiment was conducted to test the effects of root interaction and arbuscular mycorrhizal fungi (AMF) inoculation on the interspecies competition between Trifolium repens and Lolium perenne under different proportions of mixed sowing by the combination treatment of two levels of AMF inoculation (inoculation and non-inoculation) and two levels of root interaction (root interaction and non-root interaction). Overall, the aboveground and belowground biomass of T. repens and L. perenne were not altered by AMF inoculation across planting ratios, probably because the fertile soil reduced the positive effect of AMF on plant growth. Both inter- and intraspecies root interaction significantly decreased the aboveground biomass of T. repens, but tended to increase the aboveground biomass of L. perenne across planting ratios, and thus peaked at the 4:4 polyculture. These results showed that T. repens competed poorly with L. perenne because of inter and intraspecies root interaction. Our results indicate that interspecies root interaction regulates the competitive ability of grass L. perenne and legume T. repens in mixtures and further makes great contribution for overyielding. Furthermore, AMF may not be involved in plant–plant interaction in fertile condition.


2001 ◽  
Vol 49 (2) ◽  
pp. 155 ◽  
Author(s):  
Patricia A. Werner ◽  
Peter G. Murphy

The biomass of component parts of individuals of three dominant canopy tree species in the northern savannas of Australia was determined from field populations in World Heritage Kakadu National Park. Forty individual trees of Eucalyptus tetrodonta F. Muell., E. miniata Cunn. ex Schauer and E. papuana F.Muell., representing a range in size from 4 to 50 cm diameter at breast height (DBH), were felled for dry biomass of leaves, branches, woody stems and bark. Forty-seven other trees of E. tetrodonta and E. miniata were excavated for belowground biomass, by using trenching methods. The average proportion of aboveground biomass in foliage was 3–5%, to branches 20–32%, and trunk wood 77–59%, with little change over the size of a tree. Water content of foliage decreased with size of tree in all species, indicating an increasing xeromorphy as the trees age. Gross morphology of roots was bimorphic, with 70% of biomass at <20-cm soil depth, and large roots running horizontally on top of the shallow (0.3–1.4 m) ferricrete layer. There was no evidence of roots having access to water below this layer. Patterns of heights, percentage biomass allocation, percentage water content, and bark thickness of the three species were consistent with the rank order of their distributions across a topographic gradient, reflecting relative capacities to withstand drought, belowground competition and fire. By using tree diameter as the independent variable (x in cm DBH), allometric relationships were calculated to provide a method for calculating growth and productivity by using non-destructive repeat measures of sizes of trees. The total aboveground biomass (y in kg) of individual trees is y = 0.2068x2.3191 for E. tetrodonta, y = 0.1527x2.390 for E. miniata and y = 0.0356x2.8567 for E. papuana. Total belowground biomass per tree for E. tetrodonta is y = 31.150e0.0601x and for E. miniata, y = 28.753e0.0644x. As a tree grows, the aboveground biomass increases as a power function and belowground biomass as an exponential function of DBH, producing a decreasing proportion of total biomass below ground, e.g. the root/shoot ratio of E. tetrodonta is 0.50 for trees <10 cm DBH, 0.40 for trees 20 cm DBH, and 0.25 for trees 40–55 cm DBH. The overall proportion of total biomass below ground in Kakadu is well below 50%, contrary to the commonly accepted notion that the majority of biomass in savannas is below ground.


Sign in / Sign up

Export Citation Format

Share Document