Characterisation Campaign at the Gobabeb RadCalNet Site in Support of Satellite Calibration and Validation Activities

Author(s):  
Morven Sinclair ◽  
Chris McLellan ◽  
Agnieszka Bialek ◽  
Emma R Woolliams ◽  
Sarah Taylor ◽  
...  

<p>With increasing use of satellite-derived data in climate and Earth monitoring, the importance of reliable and traceable radiometric and spectral information is key. Due to the difficulties of maintaining instrument calibration post-launch, vicarious calibration sites play a vital part in ensuring the stability and interoperability of satellite sensor data.</p><p>RadCalNet, the Radiometric Calibration Network established through the Committee on Earth Observation Satellites Working Group on Calibration and Validation (CEOS-WGCV), provides a network of, currently four, instrumented ground reference sites providing users with bottom and top-of-atmosphere (BOA and TOA) reflectance measurements every 30 minutes in 10 nm spectral intervals and for nadir view. (For all sites, more detailed spectral information and off-nadir reflectances can be obtained from site owners). It is a key aspect of RadCalNet that the sites document their traceability to the International System of Units (SI) and that they provide traceable uncertainties associated with individual observations. These documents and uncertainties are peer reviewed by the RadCalNet working group.  Each RadCalNet site provides ground reflectance observations that are propagated to TOA through a centralised processing system. RadCalNet has over 300 active users who value the available information.</p><p>Gobabeb, in Namibia, is one of these four sites, given the reference GONA. GONA was the first site that was established as a new RadCalNet site (the other sites were pre-existing) and the location was determined from a global survey to find suitable sites, primarily due to spatial uniformity and the probability of suitable atmospheric conditions, such as clear skies. With an automatic radiometric station, this site continuously collects atmospheric data and surface radiance measurements. These are then processed to ground spectral reflectance and provided with uncertainties to the RadCalNet processor which propagates values to TOA.</p><p>Due to the limitations of the instrument used for autonomous measurements, recent fieldwork has been carried out in this location to acquire additional hyperspectral data to maintain the quality of the site products. In addition, further site characterisation was conducted to prepare a best location for a new site nearby that is being developed under the HYPERNETS project. This paper presents both the RadCalNet site and the results of the recent fieldwork.</p>

2020 ◽  
Vol 12 (11) ◽  
pp. 1696 ◽  
Author(s):  
Lingling Ma ◽  
Yongguang Zhao ◽  
Emma R. Woolliams ◽  
Caihong Dai ◽  
Ning Wang ◽  
...  

Vicarious calibration and validation techniques are important tools to ensure the long-term stability and inter-sensor consistency of satellite sensors making observations in the solar-reflective spectral domain. Automated test sites, which have continuous in situ monitoring of both ground reflectance and atmospheric conditions, can greatly increase the match-up possibilities for a wide range of space agency and commercial sensors. The Baotou calibration and validation test site in China provides operational high-accuracy and high-stability vicarious calibration and validation for high spatial resolution solar-reflective remote-sensing sensors. Two sites, given the abbreviations BTCN (an artificial site) and BSCN (a natural sandy site), have been selected as reference sites for the Committee on Earth Observation Satellites radiometric calibration network (RadCalNet). RadCalNet requires sites to provide data in a consistent format but does not specify the required operational conditions for a RadCalNet site. The two Baotou sites are the only sites to date that make spectral measurements for their continuous operation. One of the core principles of RadCalNet is that each site should have a metrologically rigorous uncertainty budget which also describes the site’s traceability to the international system of units, the SI. This paper shows a formalized metrological approach to determining and documenting the uncertainty budget and traceability of a RadCalNet site. This approach follows the Guide to the Expression of Uncertainty in Measurement. The paper describes the uncertainty analysis for bottom-of-atmosphere and top-of-atmosphere reflectance in the spectral region from 400 to 1000 nm for the Baotou sites and gives preliminary results for the uncertainty propagating this to top-of-atmosphere reflectance.


2016 ◽  
Vol 4 (2) ◽  
pp. 81-83
Author(s):  
Akiharu Hioki ◽  

Metrological traceability to an international reference, the International System of Units (SI) if possible, is important for the reliability of measurements. The international traceability system under the Metre Convention is briefly introduced. The simplest way to secure metrological traceability in chemical analyses is to utilise certified reference materials (CRMs) for calibration and validation. Finally, as examples of CRMs, NMIJ ones are described.


2018 ◽  
Vol 11 (7) ◽  
pp. 3871-3882 ◽  
Author(s):  
Anne Kleinert ◽  
Isabell Krisch ◽  
Jörn Ungermann ◽  
Albert Adibekyan ◽  
Berndt Gutschwager ◽  
...  

Abstract. Limb sounding instruments play an important role in the monitoring of climate trends, as they provide a good vertical resolution. Traceability to the International System of Units (SI) via onboard reference or transfer standards is needed to compare trend estimates from multiple instruments. This study investigates the required uncertainty of these radiation standards to properly resolve decadal trends of climate-relevant trace species like ozone, water vapor, and temperature distribution for the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA). Temperature nonuniformities of the onboard reference blackbodies, used for radiometric calibration, have an impact on the calibration uncertainty. The propagation of these nonuniformities through the retrieval is analyzed. A threshold for the maximum tolerable uncertainty of the blackbody temperature is derived, so that climate trends can be significantly identified with GLORIA.


2020 ◽  
pp. 26-32
Author(s):  
M. I. Kalinin ◽  
L. K. Isaev ◽  
F. V. Bulygin

The situation that has developed in the International System of Units (SI) as a result of adopting the recommendation of the International Committee of Weights and Measures (CIPM) in 1980, which proposed to consider plane and solid angles as dimensionless derived quantities, is analyzed. It is shown that the basis for such a solution was a misunderstanding of the mathematical formula relating the arc length of a circle with its radius and corresponding central angle, as well as of the expansions of trigonometric functions in series. From the analysis presented in the article, it follows that a plane angle does not depend on any of the SI quantities and should be assigned to the base quantities, and its unit, the radian, should be added to the base SI units. A solid angle, in this case, turns out to be a derived quantity of a plane angle. Its unit, the steradian, is a coherent derived unit equal to the square radian.


2020 ◽  
Vol 87 (4) ◽  
pp. 258-265
Author(s):  
Luca Callegaro

AbstractThe revision of the International System of Units (SI), implemented since 20 May 2019, has redefined the unit of electric current, the ampere ( A), linking it to a fixed value of the elementary charge. This paper discusses the new definition and the realisation of the electrical units by quantum electrical metrology standards, which every year become more and more accessible, reliable and user friendly.


Sign in / Sign up

Export Citation Format

Share Document