On the Drag parameter of ICME propagation models

Author(s):  
Gianluca Napoletano ◽  
Raffaello Foldes ◽  
Dario Del Moro ◽  
Francesco Berrilli ◽  
Luca Giovannelli ◽  
...  

<p>ICME (Interplanetary Coronal Mass Ejection) are violent phenomena of solar activity that affect the whole heliosphere and the prediction of their impact on different solar system bodies is one of the primary goals of the planetary space weather forecasting. The travel time of an ICME from the Sun to the Earth can be computed through the Drag-Based Model (DBM), which is based on a simple equation of motion for the ICME defining its acceleration as a=-Γ(v-w)v-w, where a and v are the CME acceleration and speed, w is the ambient solar-wind speed and Γ is the so-called drag parameter (Vršnak et al., 2013).<br>In this framework, Γ depends on the ICME mass and cross-section, on the solar-wind density and, to a lesser degree, on other parameters. The typical working hypothesis for DBM implies that both Γ and w are constant far from the Sun. To run the codes, forecasters use empirical<br>input values for Γ and w, derived by pre-existent knowledge of solar-wind condition and by solving the “inverted problem” (where the ICME travel time is known and the unknowns are Γ and/or w). In<br>the 'Ensemble' approaches (Dumbovich et al., 2018; Napoletano et al. 2018), the uncertainty about the actual values of such inputs are rendered by Probability Distribution Functions (PDFs), accounting for the values variability and our lack of knowledge. Among those PDFs, that of Γ is poorly defined due to the relatively scarce statistics of recorded values. </p><p>Employing a list of past ICME events, for which initial conditions when leaving the Sun and arrival conditions at the Earth are known, we employ a statistical approach to the Drag-Based Model to determine a measure of Γ and w for each case. This allows to obtain distributions for the model parameters on experimental basis and, more importantly, to test whether different conditions of relative velocity to the solar wind influence the value of the drag efficiency, as it must be expected for solid objects moving into an external fluid. In addition, we perform numerical simulations of a solid ICME-shaped structure moving into the solar-wind modelled as an external fluid. Outcomes from these simulations are compared with our experimental results, and thus employed to interpret them on physical basis.</p>

2012 ◽  
Vol 8 (S294) ◽  
pp. 487-488
Author(s):  
Li-Jia Liu ◽  
Bo Peng

AbstractThe Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.


2021 ◽  
Author(s):  
Tereza Durovcova ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>Two large-scale interaction regions between the fast solar wind emanating from coronal holes and the slow solar wind coming from streamer belt are usually distinguished. When the fast stream pushes up against the slow solar wind ahead of it, a compressed interaction region that co-rotates with the Sun (CIR) is created. It was already shown that the relative abundance of alpha particles, which usually serve as one of solar wind source identifiers can change within this region. By symmetry, when the fast stream outruns the slow stream, a corotating rarefaction region (CRR) is formed. CRRs are characterized by a monotonic decrease of the solar wind speed, and they are associated with the regions of small longitudinal extent on the Sun. In our study, we use near-Earth measurements complemented by observations at different heliocentric distances, and focus on the behavior of alpha particles in the CRRs because we found that the large variations of the relative helium abundance (AHe) can also be observed there. Unlike in the CIRs, these variations are usually not connected with the solar wind speed and alpha-proton relative drift changes. We thus apply a superposed-epoch analysis of identified CRRs with a motivation to determine the global profile of alpha particle parameters through these regions. Next, we concentrate on the cases with largest AHe variations and investigate whether they can be associated with the changes of the solar wind source region or whether there is a relation between the AHe variations and the non-thermal features in the proton velocity distribution functions like the temperature anisotropy and/or presence of the proton beam.</p>


2020 ◽  
Author(s):  
Justin Kasper ◽  

<p>Parker Solar Probe (PSP) has completed four encounters with the Sun since launch, three with a perihelion of 35.7 solar radii and one at 27.9 solar radii in January of this year.  More than a factor of two closer to the Sun than any previous mission, observations by the spacecraft are already revealing a surprisingly dynamic and non-thermal solar wind plasma near the Sun.  An overview of initial findings related to the solar wind and coronal plasmas will be presented, including the discovery of large-amplitude velocity spikes, highly non-thermal distribution functions, and large non-radial flows of plasma near the Sun observed by the Solar Wind Electrons Alphas and Protons (SWEAP) Investigation plasma instruments and the FIELDS Investigation electromagnetic field instruments.  Once PSP dropped below a quarter of the distance from the Sun to the Earth, SWEAP began to detect a persistent and growing rotational circulation of the plasma around the Sun peaking at 40-50 km/s at perihelion as the Alfvén mach number fell to 3.  This finding may support theories for enhanced stellar angular momentum loss due to rigid coronal rotation, but the circulation is large, and angular momentum does not appear to be conserved, suggesting that torques still act on the young wind at these distances.  PSP also measured numerous intense and organized Alfvénic velocity spikes with strong propagating field reversals and large jumps in speed.  These field reversals and jets call for an overhaul in our understanding of the turbulent fluctuations that may, by energizing the solar wind, hold the key to its origin.</p>


2020 ◽  
Author(s):  
Tanja Amerstorfer ◽  
Jürgen Hinterreiter ◽  
Martin A. Reiss ◽  
Maike Bauer ◽  
Christian Möstl ◽  
...  

<p>During the last years, we focused on developing a prediction tool that utilizes the wide-angle observations of STEREO's heliospheric imagers. The unsurpassable advantage of these imagers is the possibility to observe the evolution and propagation of a coronal mass ejection (CME) from close to the Sun up to 1 AU and beyond. We believe that using this advantage instead of relying on coronagraph observations that are limited to observe only 14% of the Sun-Earth line, it is possible to improve today's CME arrival time predictions.<br>The ELlipse Evolution model based on HI observations (ELEvoHI) assumes an elliptic frontal shape within the ecliptic plane and allows the CME to adjust to the ambient solar wind speed, i.e. it is drag-based. ELEvoHI is used as an ensemble simulation by varying the CME frontal shape within given boundary values. The results include a frequency distrubution of predicted arrival time and arrival speed and an estimation of the arrival probability. ELEvoHI can be operated using several kinds of inputs. In this study we investigate 15 well-defined single CMEs when STEREO was around L4/5 between the end of 2009 and the beginning of 2011. Three different sources of input propagation directions (and shapes) are used together with three different sources of ambient solar wind speed and two different ways of defining the most appropriate fit to the HI data. The combination of these different approaches and inputs leads to 18 different model set-ups used to predict each of the 15 events in our list leading to 270 ELEvoHI ensemble predictions and all in all to almost 60000 runs. To identify the most suitable and most accurate model set-up to run ELEvoHI, we compare the predictions to the actual in situ arrival of the CMEs.<br>This model is specified for using data from future space weather missions carrying HIs located at L5 or L1 and can also directly be used together with STEREO-A near real-time HI beacon data to provide real-time CME arrival predictions during the next 7 years when STEREO-A is observing the Sun-Earth space.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Antonio Fernando Bertachini de Almeida Prado ◽  
Justyna Golebiewska

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.


2021 ◽  
Author(s):  
Jacobo Varela Rodriguez ◽  
Sacha A. Brun ◽  
Antoine Strugarek ◽  
Victor Réville ◽  
Filippo Pantellini ◽  
...  

<p><span>The aim of the study is to analyze the response of the Earth magnetosphere for various space weather conditions and model the effect of interplanetary coronal mass ejections. The magnetopause stand off distance, open-closed field lines boundary and plasma flows towards the planet surface are investigated. We use the MHD code PLUTO in spherical coordinates to perform a parametric study regarding the dynamic pressure and temperature of the solar wind as well as the interplanetary magnetic field intensity and orientation. The range of the parameters analyzed extends from regular to extreme space weather conditions consistent with coronal mass ejections at the Earth orbit. The direct precipitation of the solar wind on the Earth day side at equatorial latitudes is extremely unlikely even during super coronal mass ejections. For example, the SW precipitation towards the Earth surface for a IMF purely oriented in the Southward direction requires a IMF intensity around 1000 nT and the SW dynamic pressure above 350 nPa, space weather conditions well above super-ICMEs. The analysis is extended to previous stages of the solar evolution considering the rotation tracks from Carolan (2019). The simulations performed indicate an efficient shielding of the Earth surface 1100 Myr after the Sun enters in the main sequence. On the other hand, for early evolution phases along the Sun main sequence once the Sun rotation rate was at least 5 times faster (< 440 Myr), the Earth surface was directly exposed to the solar wind during coronal mass ejections (assuming today´s Earth magnetic field). Regarding the satellites orbiting the Earth, Southward and Ecliptic IMF orientations are particularly adverse for Geosynchronous satellites, partially exposed to the SW if the SW dynamic pressure is 8-14 nPa and the IMF intensity 10 nT. On the other hand, Medium orbit satellites at 20000 km are directly exposed to the SW during Common ICME if the IMF orientation is Southward and during Strong ICME if the IMF orientation is Earth-Sun or Ecliptic. The same way, Medium orbit satellites at 10000 km are directly exposed to the SW if a Super ICME with Southward IMF orientation impacts the Earth.</span></p><p>This work was supported by the project 2019-T1/AMB-13648 founded by the Comunidad de Madrid, grants ERC WholeSun, Exoplanets A and PNP. We extend our thanks to CNES for Solar Orbiter, PLATO and Meteo Space science support and to INSU/PNST for their financial support.</p>


2009 ◽  
Vol 27 (9) ◽  
pp. 3677-3690 ◽  
Author(s):  
R. Bučík ◽  
U. Mall ◽  
A. Korth ◽  
G. M. Mason

Abstract. Observations of multi-MeV corotating interaction region (CIR) ions are in general consistent with models of CIR shock acceleration and transport. The presence of suprathermal particles near 1 AU in unshocked compression regions is not adequately explained. Nonetheless, more recent works demonstrate that unshocked compression regions associated with CIRs near 1 AU could energize particles. In the energy range from ~0.1 to ~1 MeV/n we investigate CIR events observed in 2007–2008 by the STEREO A and B spacecraft. We treat the predictions of compression acceleration by comparing the observed ion intensities with the model parameters. These observations show that the ion intensity in CIR events with in-situ reverse shock is well organized by the parameters which characterize the compression region itself, like compression width, solar wind speed gradients and the total pressure. In turn, for CIR events with the absence of the shocks the model predictions are not fulfilled.


2008 ◽  
Vol 4 (S257) ◽  
pp. 271-277
Author(s):  
Bojan Vršnak ◽  
Dijana Vrbanec ◽  
Jaša Čalogović ◽  
Tomislav Žic

AbstractDynamics of coronal mass ejections (CMEs) is strongly affected by the interaction of the erupting structure with the ambient magnetoplasma: eruptions that are faster than solar wind transfer the momentum and energy to the wind and generally decelerate, whereas slower ones gain the momentum and accelerate. Such a behavior can be expressed in terms of “aerodynamic” drag. We employ a large sample of CMEs to analyze the relationship between kinematics of CMEs and drag-related parameters, such as ambient solar wind speed and the CME mass. Employing coronagraphic observations it is demonstrated that massive CMEs are less affected by the aerodynamic drag than light ones. On the other hand, in situ measurements are used to inspect the role of the solar wind speed and it is shown that the Sun-Earth transit time is more closely related to the wind speed than to take-off speed of CMEs. These findings are interpreted by analyzing solutions of a simple equation of motion based on the standard form for the drag acceleration. The results show that most of the acceleration/deceleration of CMEs on their way through the interplanetary space takes place close to the Sun, where the ambient plasma density is still high. Implications for the space weather forecasting of CME arrival-times are discussed.


Sign in / Sign up

Export Citation Format

Share Document