Preliminary DORIS results on Precise Orbit Determination and on geocenter and scale solutions from CNES/CLS IDS Analysis Center contribution to the ITRF2020

Author(s):  
Hugues Capdeville

<p>The processing configuration for our IDS contribution to the International Terrestrial Reference Frame (ITRF2020) realization was defined. We adopted the last standards and models recommended by IERS. We took into account the IDS recommendations to mitigate the non-conservative force model error on satellites, to mitigate the effect of the South Atlantic Anomaly on the DORIS receivers and to improve the stability of the DORIS scale.</p><p>A Precise Orbit Determination (POD) status for DORIS satellites by taking into account all these improvements will be presented for the processed time span. We will give statistical results such as one per revolution empirical acceleration amplitudes and orbit residuals. We will also give some comparisons to some external precise orbits used for altimetry. Some external validations of our orbits will be done, such as with independent SLR measurements processing as well as through the use of altimeter crossovers when available. We will also look at the impact of our new ITRF2020 configuration on the DORIS geocenter and scale.</p><p> </p>

2021 ◽  
Author(s):  
Hugues Capdeville ◽  
Adrien Mezerette ◽  
Jean-Michel Lemoine

<p>The processing configuration for our IDS contribution to the International Terrestrial Reference Frame (ITRF2020) realization was defined. We adopted the last standards and models recommended by IERS. We took into account the IDS recommendations to mitigate the non-conservative force model error on satellites, to mitigate the effect of the South Atlantic Anomaly on the DORIS receivers and to improve the stability of the DORIS scale.</p><p>A Precise Orbit Determination (POD) status for DORIS satellites by taking into account all these improvements will be presented for the processed time span. We will give statistical results such as one per revolution empirical acceleration amplitudes and orbit residuals. We will also give some comparisons to some external precise orbits used for altimetry. Some external validations of our orbits will be done, such as with independent SLR measurements processing as well as through the use of altimeter crossovers when available. We will also look at the impact of our new ITRF2020 configuration on the DORIS geocenter and scale.</p>


GPS Solutions ◽  
2022 ◽  
Vol 26 (2) ◽  
Author(s):  
Grzegorz Bury ◽  
Krzysztof Sośnica ◽  
Radosław Zajdel ◽  
Dariusz Strugarek

AbstractDue to the continued development of the GLONASS satellites, precise orbit determination (POD) still poses a series of challenges. This study examines the impact of introducing the analytical tube-wing model for GLONASS-M and the box-wing model for GLONASS-K in a series of hybrid POD strategies that consider both the analytical model and a series of empirical parameters. We assess the perturbing accelerations acting on GLONASS spacecraft based on the analytical model. All GLONASS satellites are equipped with laser retroreflectors for satellite laser ranging (SLR). We apply the SLR observations for the GLONASS POD in a series of GNSS + SLR combined solutions. The application of the box-wing model significantly improves GLONASS orbits, especially for GLONASS-K, reducing the STD of SLR residuals from 92.6 to 27.6 mm. Although the metadata for all GLONASS-M satellites reveal similar construction characteristics, we found differences in empirical accelerations and SLR offsets not only between GLONASS-M and GLONASS-M+ but also within the GLONASS-M+ series. Moreover, we identify satellites with inferior orbit solutions and check if we can improve them using the analytical model and SLR observations. For GLONASS-M SVN730, the STD of the SLR residuals for orbits determined using the empirical solution is 48.7 mm. The STD diminishes to 41.2 and 37.8 mm when introducing the tube-wing model and SLR observations, respectively. As a result, both the application of the SLR observations and the analytical model significantly improve the orbit solution as well as reduce systematic errors affecting orbits of GLONASS satellites.


2019 ◽  
Vol 11 (23) ◽  
pp. 2735 ◽  
Author(s):  
Honglei Yang ◽  
Tianhe Xu ◽  
Wenfeng Nie ◽  
Fan Gao ◽  
Meiqian Guan

The BeiDou Navigation Satellite System (BDS) of China is currently in the hybrid-use period of BDS-2 and BDS-3 satellites. All of them are equipped with Laser Retroreflect Arrays (LRAs) for Satellite Laser Ranging (SLR), which can directly obtain an independent, sub-centimetre level of distance measurement. The main purpose of this contribution is to use the solely SLR Normal Points (NPs) data to determinate the precise orbit of BDS-2 and BDS-3 satellites, including one Geostationary Earth Orbit (GEO), three Inclined Geo-Synchronous Orbits (ISGO), and one Medium Earth Orbit (MEO) of BDS-2 satellites, as well as four MEO of BDS-3 satellites, from 1 January to 30 June 2019. The microwave-based orbit from Wuhan University (WUM) are firstly validated to mark and eliminate the bad SLR observations in our preprocessing stage. Then, the 3-, 5-, 7-, and 9-day arc solutions are performed to investigate the impact of the different orbital arc lengths on the quality of SLR-derived orbits and test the optimal solution of the multi-day arc. Moreover, the dependency of SLR-only orbit determination accuracy on the number of SLR observations and the number of SLR sites are discussed to explore the orbit determination quality of the 3-,5-, 7-, and 9-day arc solutions. The results indicate that (1) during the half-year time span of 2019, the overall Root Mean Square (RMS) of SLR validation residuals derived from WUM is 19.0 cm for BDS-2 GEO C01, 5.2–7.3 cm for three BDS-2 IGSO, 3.4 cm for BDS-2 MEO C11, and 4.4–5.7 cm for four BDS-3 MEO satellites respectively. (2) The 9-day arc solutions present the best orbit accuracy in our multi-day SLR-only orbit determination for BDS IGSO and MEO satellites. The 9-day overlaps median RMS of BDS MEO in RTN directions are evaluated at 3.6–5.7, 12.4–21.6, and 15.6–23.9 cm respectively, as well as 5.7–9.6, 15.0–36.8, and 16.5–35.2 cm for the comparison with WUM precise orbits, while these values of BDS IGSO are larger by a factor of about 3–10 than BDS MEO orbits in their corresponding RTN directions. Furthermore, the optimal average 3D-RMS of 9-day overlaps is 0.49 and 1.89 m for BDS MEO and IGSO respectively, as well as 0.55 and 1.85 m in comparison with WUM orbits. Owing to its extremely rare SLR observations, the SLR-only orbit determination accuracy of BDS-2 GEO satellite can only reach a level of 10 metres or worse. (3) To obtain a stable and reliable SLR-only precise orbit, the 7-day to 9-day arc solutions are necessary to provide a sufficient SLR observation quantity and geometry, with more than 50–80 available SLR observations at 5–6 SLR sites that are evenly distributed, both in the Northern and Southern Hemispheres.


2020 ◽  
Author(s):  
Alireza HosseiniArani ◽  
Stefano Bertone ◽  
Daniel Arnold ◽  
Adrian Jäggi ◽  
Nicolas Thomas

<p>Navigation of deep space probes is most commonly operated using the spacecraft Doppler<br>tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. This study addresses the work that is done on Doppler orbit determination of MPO - one of the two spacecraft of the European Space Agency’s BepiColombo mission- using Bernese software.</p><p>For modelling the orbit of MPO around Mercury, we use a full force model, including Mercury gravity field GGMES-100V07 (up to degree and order 50), solid tides and third body perturbations. We also have an extensive modelling of non-gravitational forces that act on the orbit of spacecraft. This modelling includes the solar radiation pressure and planetary IR and albedo radiation together with a 33-plates macromodel of MPO. We propagate the orbit using this force model. Our simulations of Doppler tracking measurements include 2-way X-band and K-band Doppler measurements, station and planetary eclipses and the relativistic corrections. </p><p>The imperfect knowledge of the non-gravitational forces due to the proximity of Mercury to the Sun, together with the effect of desaturation maneuvers uncertainties, makes the use of the accelerometer necessary. Therefore, in our modelling of the orbit recovery, the models for the non-conservative forces were replaced by the noisy simulated accelerometer measurements. We find out that the modelling of the accelerometer noise has a huge impact on the results of the POD.</p><p>We perform several orbit reconstruction tests using daily arcs with noise modulated Doppler data with different settings on the arc lengths, arcs initial conditions, dynamical model, observation mode and orbit determination process and we solve for the initial state vector of each arc. We also run sensitivity analysis with respect to the different accelerometer model. The final goal of this study is to provide an independent solution for the precise orbit determination of Mercury planetary orbiter (MPO) using the planetary extension of the Bernese GNSS software. We present out latest results and then compare our results with the existing ones from the MORE team.</p>


2020 ◽  
Author(s):  
Hanbing Peng ◽  
Maorong Ge ◽  
Yuanxi Yang ◽  
Harald Schuh ◽  
Roman Galas

<p>Since November 2017, the 3rd generation BeiDou Navigation Satellite System (BDS-3) of China has stepped into an intensive build-up phase. Up to the end of 2019, there are 5 experimental and 28 operational BDS-3 satellites in the space. Besides that, 16 BDS-2 legacy satellites are still providing Positioning, Navigation and Timing (PNT) service for Asia-Pacific users. Unlike BDS-2 satellites, BDS-3 satellites will not transmit signal on frequency B2I which is one of the open service frequencies of BDS-2 and will be replaced by B2a of BDS-3. For legacy signals, only that on B1I and B3I will be transmitted by all BDS-3 satellites. Therefore, current routine scheme that generates precise orbit and clock products with B1I+B2I combination observations becomes infeasible for BDS-3. Observation combination used for product generation of BDS-2 could be switched to B1I+B3I combination as well. However, this might cause discontinuity in BDS-2 products as different hardware delays specific to signals are contained in them. In this study, combined processing of BDS-2 and BDS-3 satellites to generate consistent precise orbit and clock products is researched. To elaborate the impact of observation biases between BDS-2 and BDS-3, different combined Precise Orbit Determination (POD) processing schemes are examined. It shows that receiver biases between BDS-2 and BDS-3 should be considered in combined POD which is clear from the post-fit residuals of observations, especially from that of BDS-3 code observations. After estimating those biases between B1I+B2I of BDS-2 and B1I+B3I of BDS-3, Root-Mean-Square (RMS) of BDS-3 code observations decreases from 5.07 to 1.23 m. The results show that, biases of B1I+B3I between BDS-2 and BDS-3 are relatively small, less than 4 m for most receivers and around 1.2 m on average. But their estimates are stable with standard deviations (STDs) of 0.13 ~ 0.34 m depending on receiver types. Influences of these biases on the POD results are limited. However, biases between B1I+B2I of BDS-2 and B1I+B3I of BDS-3 are more significant, from -10 to 30 m for different receivers. Except for Septentrio receivers, quantities of those biases are basically related to the receiver types. Averages of biases from Trimble, JAVAD and Leica receivers are 18.5, 5.0 and 10.0 m, respectively. Those biases are also estimated with very small STDs, which ranges from 0.13 to 0.28 m. It is demonstrated that those receiver biases should be properly handle in combined POD processing of BDS-2 and BDS-3 satellites. As B1I+B2I is more appropriate for BDS-2, using different observation combinations for BDS-2 and BDS-3 in combined POD processing is more preferred over the scheme in which B1I+B3I is used for both BDS-2 and BDS-3.</p>


2020 ◽  
Author(s):  
Nicat Mammadaliyev ◽  
Patrick Schreiner ◽  
Susanne Glaser ◽  
Karl Hans Neumayer ◽  
Rolf Koenig ◽  
...  

<p>The exceptional situation of simultaneously observing a dedicated near-Earth orbiting satellite via the four main space geodetic techniques opens the unique opportunity to investigate the additional benefits on the realization of global terrestrial reference frame using co-location in space. Applying co-location in space requires a precise orbit determination (POD) of dedicated satellites for all techniques. In this regard, current VLBI infrastructure is extended by the observation to satellites and the impact of such observation concept on the VLBI estimates is assessed. Thus the main geodetic products including the terrestrial reference frame are investigated within the GGOS-SIM-II project. In this study, the potential influence of orbital errors on the estimates and capability of VLBI observations to satellites within the POD are investigated for different scenarios with varying networks, observation time and measurement noise.  </p>


Sign in / Sign up

Export Citation Format

Share Document