Preliminary Results of Simulation of SOCRATES period with Global System for Atmospheric Modeling

Author(s):  
Marat Khairoutdinov ◽  
Christopher Bretherton

<p>The global version of the cloud-resolving System for Atmospheric Modeling (SAM) is used to simulate the global evolution of clouds and precipitation during the SOCRATES field campaign In Feb 2018 with particular focus on the Southern Ocean storm track region. The model has nonuniform horizontal resolution, which ranges from 4-km horizontal grid spacing over the Tropics up to 2-3 km isotropic grid-spacing over mid-latitudes. It includes a realistic topography and comprehensive land-surface model. The sea-surface temperature and sea ice are prescribed from observations. The results of two types of simulations are presented, weather-forecasting and observed-weather-nudged over 24-hour time scale; for the latter, hourly ERA5 reanalysis dataset is used. The cloud properties are compared to the SOCRATES observations. The sensitivity of the results to the choice of cloud microphysics, from simple single-moment to double-moment, is also discussed.</p>

2021 ◽  
Author(s):  
Sujeong Lim ◽  
Claudio Cassardo ◽  
Seon Ki Park

<p>The ensemble data assimilation system is beneficial to represent the initial uncertainties and flow-dependent background error covariance (BEC). In particular, the inevitable model uncertainties can be expressed by ensemble spread, that is the standard deviation of ensemble BEC. However, the ensemble spread generally suffers from under-estimated problems. To alleviate this problem, recent studies employed stochastic perturbation schemes to increases the ensemble spreads by adding the random forcing in the model tendencies (i.e., physical or dynamical tendencies) or parameterization schemes (i.e., PBL, convective scheme, etc.). In this study, we focus on the near-surface uncertainties which are affected by the interactions between the land and atmosphere process. The land surface model (LSM) provides various fluxes as the lower boundary condition to the atmosphere, influencing the accuracy of hourly-to-seasonal scale weather forecasting, but the surface uncertainties were not much addressed yet. In this study, we developed the stochastically perturbed parameterization (SPP) scheme for the Noah LSM. The Weather Research and Forecasting (WRF) ensemble system is used for regional weather forecasting over East Asia, especially over the Korean Peninsula. As a testbed experiment with the newly-developed Noah LSM-SPP system, we first perturbed the soil temperature — a crucial variable for the near-surface forecasts by affecting sensible heat fluxes, land surface skin temperature and surface air temperature, and hence lower-tropospheric temperature. Here, the random forcing used in perturbation is made by the tuning parameters for amplitude, length scale, and time scales: they are commonly determined empirically by trial and error. In order to find optimal tuning parameter values, we applied a global optimization algorithm — the micro-genetic algorithm (micro-GA) — to achieve the smallest root-mean-squared errors. Our results indicate that optimization of the random forcing parameters contributes to an increase in the ensemble spread and a decrease in the ensemble mean errors in the near-surface and lower-troposphere uncertainties. Further experiments will be conducted by including soil moisture in the testbed.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-30
Author(s):  
Ifeanyi C. Achugbu ◽  
Jimy Dudhia ◽  
Ayorinde A. Olufayo ◽  
Ifeoluwa A. Balogun ◽  
Elijah A. Adefisan ◽  
...  

Simulations with four land surface models (LSMs) (i.e., Noah, Noah-MP, Noah-MP with ground water GW option, and CLM4) using the Weather Research and Forecasting (WRF) model at 12 km horizontal grid resolution were carried out as two sets for 3 months (December–February 2011/2012 and July–September 2012) over West Africa. The objective is to assess the performance of WRF LSMs in simulating meteorological parameters over West Africa. The model precipitation was assessed against TRMM while surface temperature was compared with the ERA-Interim reanalysis dataset. Results show that the LSMs performed differently for different variables in different land-surface conditions. Based on precipitation and temperature, Noah-MP GW is overall the best for all the variables and seasons in combination, while Noah came last. Specifically, Noah-MP GW performed best for JAS temperature and precipitation; CLM4 was the best in simulating DJF precipitation, while Noah was the best in simulating DJF temperature. Noah-MP GW has the wettest Sahel while Noah has the driest one. The strength of the Tropical Easterly Jet (TEJ) is strongest in Noah-MP GW and Noah-MP compared with that in CLM4 and Noah. The core of the African Easterly Jet (AEJ) lies around 12°N in Noah and 15°N for Noah-MP GW. Noah-MP GW and Noah-MP simulations have stronger influx of moisture advection from the southwesterly monsoonal wind than the CLM4 and Noah with Noah showing the least influx. Also, analysis of the evaporative fraction shows sharp gradient for Noah-MP GW and Noah-MP with wetter Sahel further to the north and further to the south for Noah. Noah-MP-GW has the highest amount of soil moisture, while the CLM4 has the least for both the JAS and DJF seasons. The CLM4 has the highest LH for both DJF and JAS seasons but however has the least SH for both DJF and JAS seasons. The principal difference between the LSMs is in the vegetation representation, description, and parameterization of the soil water column; hence, improvement is recommended in this regard.


2021 ◽  
Author(s):  
Semjon Schimanke ◽  
Ludvig Isaksson ◽  
Lisette Edvinsson ◽  
Martin Ridal ◽  
Lars Berggren ◽  
...  

<p>The Copernicus European regional reanalysis (https://climate.copernicus.eu/regional-reanalysis-europe) is produced as part of the Copernicus Climate Change Service (C3S). The presentation will introduce the service and its main objectives as well as it will give and overview of available data. Data quality will be demonstrated by comparison with ERA5 and other gridded datasets.</p><p>In the first phase of the service, systems inherited from the FP7 project UERRA (Uncertainties in Ensembles of Regional ReAnalyses, http://www.uerra.eu) were applied extending the UERRA-HARMONIE as well as the MESCAN-SURFEX datasets. These datasets contain analyses of the atmosphere, the surface and the soil. UERRA-HARMONIE is a full model system including a 3D-Var data assimilation scheme for upper air observations and an OI-scheme for surface observations. MESCAN-SURFEX is a complementary 2D surface analysis system interfaced to a land surface model. Data is available for entire Europe at a horizontal resolution of 11 km for UERRA-HARMONIE and at 5.5 km for MESCAN-SURFEX. The systems provide four analyses per day – at 0 UTC, 6 UTC, 12 UTC, and 18 UTC. Between the analyses ranges, forecasts of the systems are available with hourly resolution. More than fifty parameters are available on various level types. Data are available for the period 1961 – July 2019 through Copernicus Climate Data Store (CDS).</p><p>In spring 2020, the service started the production of the next generation regional reanalysis. The successor comprises three components:<br>- CERRA (5.5 km horizontal resolution)<br>- CERRA-EDA (10-member ensemble at 11 km resolution)<br>- CERRA-Land (5.5 km horizontal resolution)</p><p>In addition to the higher resolution, CERRA is more sophisticated than UERRA. For instance, more observations are assimilated into CERRA, in particular remote sensing data. CERRA is produced with 3-hourly cycling and a flow depending part of the B-matrix is derived from CERRA-EDA. The production of CERRA, CERRA-EDA and CERRA-Land will complete in September/October 2021 and data will become available in the CDS shortly thereafter.</p><p>The quality of the regional reanalysis in comparison to ERA5 will be shown with results of the standard HARMONIE-verification package as well as based on certain case studies. For instance, the winter storm Gudrun (January 2005, southern Sweden) will be investigated.</p>


2020 ◽  
Vol 24 (3) ◽  
pp. 1073-1079
Author(s):  
Amirhossein Mazrooei ◽  
Arumugam Sankarasubramanian ◽  
Venkat Lakshmi

Abstract. Providing accurate soil moisture (SM) conditions is a critical step in model initialization in weather forecasting, agricultural planning, and water resources management. This study develops monthly-to-seasonal (M2S) top layer SM forecasts by forcing 1- to 3-month-ahead precipitation forecasts with Noah3.2 Land Surface Model. The SM forecasts are developed over the southeastern US (SEUS), and the SM forecasting skill is evaluated in comparison with the remotely sensed SM observations collected by the Soil Moisture Active Passive (SMAP) satellite. Our results indicate potential in developing real-time SM forecasts. The retrospective 18-month (April 2015–September 2016) comparison between SM forecasts and the SMAP observations shows statistically significant correlations of 0.62, 0.57, and 0.58 over 1-, 2-, and 3-month lead times respectively.


2011 ◽  
Vol 116 (D21) ◽  
Author(s):  
Emanuel Dutra ◽  
Sven Kotlarski ◽  
Pedro Viterbo ◽  
Gianpaolo Balsamo ◽  
Pedro M. A. Miranda ◽  
...  

2017 ◽  
Vol 21 (5) ◽  
pp. 2483-2495 ◽  
Author(s):  
Rene Orth ◽  
Emanuel Dutra ◽  
Isabel F. Trigo ◽  
Gianpaolo Balsamo

Abstract. The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.


2011 ◽  
Vol 4 (1) ◽  
pp. 595-640 ◽  
Author(s):  
M. J. Best ◽  
M. Pryor ◽  
D. B. Clark ◽  
G. G. Rooney ◽  
R. L. H. Essery ◽  
...  

Abstract. This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM) and as such provides an opportunity for the research community to contribute their research into world-leading operational weather forecasting and climate change prediction systems. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.


2011 ◽  
Vol 4 (3) ◽  
pp. 677-699 ◽  
Author(s):  
M. J. Best ◽  
M. Pryor ◽  
D. B. Clark ◽  
G. G. Rooney ◽  
R .L. H. Essery ◽  
...  

Abstract. This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM) and as such provides a unique opportunity for the research community to contribute their research to improve both world-leading operational weather forecasting and climate change prediction systems. In addition JULES, and its forerunner MOSES, have been the basis for a number of very high-profile papers concerning the land-surface and climate over the last decade. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.


2006 ◽  
Vol 134 (1) ◽  
pp. 113-133 ◽  
Author(s):  
Teddy R. Holt ◽  
Dev Niyogi ◽  
Fei Chen ◽  
Kevin Manning ◽  
Margaret A. LeMone ◽  
...  

Abstract Numerical simulations are conducted using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to investigate the impact of land–vegetation processes on the prediction of mesoscale convection observed on 24–25 May 2002 during the International H2O Project (IHOP_2002). The control COAMPS configuration uses the Weather Research and Forecasting (WRF) model version of the Noah land surface model (LSM) initialized using a high-resolution land surface data assimilation system (HRLDAS). Physically consistent surface fields are ensured by an 18-month spinup time for HRLDAS, and physically consistent mesoscale fields are ensured by a 2-day data assimilation spinup for COAMPS. Sensitivity simulations are performed to assess the impact of land–vegetative processes by 1) replacing the Noah LSM with a simple slab soil model (SLAB), 2) adding a photosynthesis, canopy resistance/transpiration scheme [the gas exchange/photosynthesis-based evapotranspiration model (GEM)] to the Noah LSM, and 3) replacing the HRLDAS soil moisture with the National Centers for Environmental Prediction (NCEP) 40-km Eta Data Assimilation (EDAS) operational soil fields. CONTROL, EDAS, and GEM develop convection along the dryline and frontal boundaries 2–3 h after observed, with synoptic-scale forcing determining the location and timing. SLAB convection along the boundaries is further delayed, indicating that detailed surface parameterization is necessary for a realistic model forecast. EDAS soils are generally drier and warmer than HRLDAS, resulting in more extensive development of convection along the dryline than for CONTROL. The inclusion of photosynthesis-based evapotranspiration (GEM) improves predictive skill for both air temperature and moisture. Biases in soil moisture and temperature (as well as air temperature and moisture during the prefrontal period) are larger for EDAS than HRLDAS, indicating land–vegetative processes in EDAS are forced by anomalously warmer and drier conditions than observed. Of the four simulations, the errors in SLAB predictions of these quantities are generally the largest. By adding a sophisticated transpiration model, the atmospheric model is able to better respond to the more detailed representation of soil moisture and temperature. The sensitivity of the synoptically forced convection to soil and vegetative processes including transpiration indicates that detailed representation of land surface processes should be included in weather forecasting models, particularly for severe storm forecasting where local-scale information is important.


2019 ◽  
Author(s):  
Amirhossein Mazrooei ◽  
Venkat Lakshmi ◽  

Abstract. Providing accurate soil moisture (SM) conditions is a critical step in model initialization in weather forecasting, agricultural planning, and water resources management. This study develops monthly to seasonal (M2S) top layer SM forecasts by forcing 1–3 month ahead precipitation forecasts with Noah3.2 Land Surface Model. The SM forecasts are developed over the Southeast US (SEUS) and the SM forecasting skill is evaluated in comparison with the remotely sensed SM observations collected by Soil Moisture Active Passive (SMAP) satellite. Our results indicate potential in developing real-time SM forecasts. The retrospective 18-months (April 2015–September 2016) comparison between SM forecasts and the SMAP observations shows statistically significant correlations of 0.62, 0.57, and 0.58 over 1–3 month lead times respectively. As a case study, the evaluation of the issued forecasts based on the drought indexes monitored during the 2007 historical drought over the SEUS also indicate promising skill in monthly SM forecasting to support agricultural planning and water management for such natural hazards.


Sign in / Sign up

Export Citation Format

Share Document