Modeling morphological changes by tsunami Induced currents

Author(s):  
Sangyoung Son ◽  
Taehwa Jung ◽  
Dae-Hong Kim ◽  
Hyun-Doug Yoon

<p>At the nearshore area, strong and energetic flow fields can be easily formed during the tsunami event and it is hence expected coastal morphology is significantly affected by complex tsunami-induced current. In this study, the morphological changes by tsunami impacts on the US west coasts were investigated by numerical modeling. Firstly, we introduced a developed numerical model for calculating morphological changes by the tsunami wave, which incorporates a set of sub-models; hydrodynamics, sediment transport and morphological evolution models. The fully nonlinear Boussinesq-type model was adopted in the hydrodynamics calculations aiming at the better recreation of nearshore current fields which easily develop into turbulent flows due to various types of sources (e.g., wave-breaking). Then, the benchmark tests of one-dimensional or two-dimensional sedimentation problems were performed for validation; dam-break flow over the movable bed, breaking solitary waves over a sloping beach, partially breached dam-break flow over the mobile bed, and dam-break flows over a movable bed with a sudden enlargement. Calculated results revealed good agreement with the experimental records when a reasonable parameter has been chosen for closure models. As a real-scale application of the model, the 2011 Tohoku-Oki tsunami event was attempted, which subsequently presented a good prediction of tsunami-generated scouring and deposition in harbors. It was also confirmed that strong currents were successfully generated through the model, causing severe depth changes through the sedimentation process. To provide a rough guide for prospective users, we also performed several types of sensitivity tests on many parameters involved in the model</p>

Author(s):  
Haijiang Liu ◽  
Xiaohu Deng

Dam-break flow has direct relationship with many coastal engineering problems, such as swash movement and tsunami event. Plenty of studies have been conducted on this topic. In terms of theoretical analysis, initiating from the classic Ritter’s solution, various approaches have been applied, e.g., the method of characteristics, the perturbation method, and the parametric substitution. As for the physical test, significant improvement has been achieved with the development of measuring instruments. Nevertheless, clear understanding on the hydrodynamic features of the wave tip region, where the bottom resistance and flow viscosity play important roles, is still far beyond enough.


2016 ◽  
pp. 522-527
Author(s):  
J. Zhao ◽  
I. Özgen ◽  
R. Hinkelmann ◽  
F. Simons ◽  
D. Liang

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Mingliang Zhang ◽  
Yuanyuan Xu ◽  
Jin Li ◽  
Huiting Qiao ◽  
Hongxing Zhang

This study models a dam-break flow over a bed by using a depth-averaged numerical model based on finite-volume method and computes the dam-break flow and bed morphology characteristics. The generalized shallow water equations considering the sediment transport and bed change on dam-break flow are adopted in the numerical model, and the vegetation effects on the flow and morphological changes are considered. The model is verified against three cases from the laboratory and field data documented in the literature. The numerical results are consistent with the measured results, which show that the model could accurately simulate the evolution of the dam-break flows and the morphology evolution of bed within a computational domain with complex plant distribution. The results show that the riparian vegetation in the waterway narrows the channel and reduces the conveyance capacity of river. The flood flow is diverted away from the vegetation community toward two sides and forms a weak flow region behind the vegetation domain. The resistance of plants markedly reduces the flow velocity, which directly alters the fluvial processes and influences the waterway morphology.


2021 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Hiroshi Takagi ◽  
Fumitaka Furukawa

Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow experiments due to the laborious experimental procedures required. For the stochastic analysis of these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded high-frequency bottom pressures. The obtained data were processed to determine the statistical relationships between gate speed and maximum pressure. The correlations between them were found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate (Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR) suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4. When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. However, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates downstream. The maximum pressure appears within long-period surge-pressure phases; however, instances considered as statistical outliers appear within short and impulsive pressure phases. A few unique phenomena, which could cause significant bottom pressure variability, were also identified through visual analyses using high-speed camera images. For example, an explosive water jet increases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved similarly to ship wakes, causing a strong horizontal mixture of the water flow.


2021 ◽  
Vol 110 ◽  
pp. 102583
Author(s):  
Elona Fetahu ◽  
Oguz Yilmaz

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 673-690 ◽  
Author(s):  
Guilherme Franz ◽  
Matthias T. Delpey ◽  
David Brito ◽  
Lígia Pinto ◽  
Paulo Leitão ◽  
...  

Abstract. Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.


Sign in / Sign up

Export Citation Format

Share Document