Deep learning Q inversion from reflection seismic data with strong attenuation using an encoder-decoder convolutional neural network: an example from South China Sea

Author(s):  
Hao Zhang ◽  
Jianguang Han ◽  
Heng Zhang ◽  
Yi Zhang

<p>The seismic waves exhibit various types of attenuation while propagating through the subsurface, which is strongly related to the complexity of the earth. Anelasticity of the subsurface medium, which is quantified by the quality factor Q, causes dissipation of seismic energy. Attenuation distorts the phase of the seismic data and decays the higher frequencies in the data more than lower frequencies. Strong attenuation effect resulting from geology such as gas pocket is a notoriously challenging problem for high resolution imaging because it strongly reduces the amplitude and downgrade the imaging quality of deeper events. To compensate this attenuation effect, first we need to accurately estimate the attenuation model (Q). However, it is challenging to directly derive a laterally and vertically varying attenuation model in depth domain from the surface reflection seismic data. This research paper proposes a method to derive the anomalous Q model corresponding to strong attenuative media from marine reflection seismic data using a deep-learning approach, the convolutional neural network (CNN). We treat Q anomaly detection problem as a semantic segmentation task and train an encoder-decoder CNN (U-Net) to perform a pixel-by-pixel prediction on the seismic section to invert a pixel group belongs to different level of attenuation probability which can help to build up the attenuation model. The proposed method in this paper uses a volume of marine 3D reflection seismic data for network training and validation, which needs only a very small amount of data as the training set due to the feature of U-Net, a specific encoder-decoder CNN architecture in semantic segmentation task. Finally, in order to evaluate the attenuation model result predicted by the proposed method, we validate the predicted heterogeneous Q model using de-absorption pre-stack depth migration (Q-PSDM), a high-resolution depth imaging result with reasonable compensation is obtained.</p>

2019 ◽  
Vol 9 (9) ◽  
pp. 1816 ◽  
Author(s):  
Guangsheng Chen ◽  
Chao Li ◽  
Wei Wei ◽  
Weipeng Jing ◽  
Marcin Woźniak ◽  
...  

Recent developments in Convolutional Neural Networks (CNNs) have allowed for the achievement of solid advances in semantic segmentation of high-resolution remote sensing (HRRS) images. Nevertheless, the problems of poor classification of small objects and unclear boundaries caused by the characteristics of the HRRS image data have not been fully considered by previous works. To tackle these challenging problems, we propose an improved semantic segmentation neural network, which adopts dilated convolution, a fully connected (FC) fusion path and pre-trained encoder for the semantic segmentation task of HRRS imagery. The network is built with the computationally-efficient DeepLabv3 architecture, with added Augmented Atrous Spatial Pyramid Pool and FC Fusion Path layers. Dilated convolution enlarges the receptive field of feature points without decreasing the feature map resolution. The improved neural network architecture enhances HRRS image segmentation, reaching the classification accuracy of 91%, and the precision of recognition of small objects is improved. The applicability of the improved model to the remote sensing image segmentation task is verified.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3813
Author(s):  
Athanasios Anagnostis ◽  
Aristotelis C. Tagarakis ◽  
Dimitrios Kateris ◽  
Vasileios Moysiadis ◽  
Claus Grøn Sørensen ◽  
...  

This study aimed to propose an approach for orchard trees segmentation using aerial images based on a deep learning convolutional neural network variant, namely the U-net network. The purpose was the automated detection and localization of the canopy of orchard trees under various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The implemented dataset was composed of images from three different walnut orchards. The achieved variability of the dataset resulted in obtaining images that fell under seven different use cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing, respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards based on two methods (oversampling and undersampling) in order to tackle issues with out-of-the-field boundary transparent pixels from the image. Even though the training dataset did not contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating the robustness of the proposed approach.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Author(s):  
Leonardo Tanzi ◽  
Pietro Piazzolla ◽  
Francesco Porpiglia ◽  
Enrico Vezzetti

Abstract Purpose The current study aimed to propose a Deep Learning (DL) and Augmented Reality (AR) based solution for a in-vivo robot-assisted radical prostatectomy (RARP), to improve the precision of a published work from our group. We implemented a two-steps automatic system to align a 3D virtual ad-hoc model of a patient’s organ with its 2D endoscopic image, to assist surgeons during the procedure. Methods This approach was carried out using a Convolutional Neural Network (CNN) based structure for semantic segmentation and a subsequent elaboration of the obtained output, which produced the needed parameters for attaching the 3D model. We used a dataset obtained from 5 endoscopic videos (A, B, C, D, E), selected and tagged by our team’s specialists. We then evaluated the most performing couple of segmentation architecture and neural network and tested the overlay performances. Results U-Net stood out as the most effecting architectures for segmentation. ResNet and MobileNet obtained similar Intersection over Unit (IoU) results but MobileNet was able to elaborate almost twice operations per seconds. This segmentation technique outperformed the results from the former work, obtaining an average IoU for the catheter of 0.894 (σ = 0.076) compared to 0.339 (σ = 0.195). This modifications lead to an improvement also in the 3D overlay performances, in particular in the Euclidean Distance between the predicted and actual model’s anchor point, from 12.569 (σ= 4.456) to 4.160 (σ = 1.448) and in the Geodesic Distance between the predicted and actual model’s rotations, from 0.266 (σ = 0.131) to 0.169 (σ = 0.073). Conclusion This work is a further step through the adoption of DL and AR in the surgery domain. In future works, we will overcome the limits of this approach and finally improve every step of the surgical procedure.


2013 ◽  
Vol 167 ◽  
pp. 72-83 ◽  
Author(s):  
J.S. L'Heureux ◽  
M. Long ◽  
M. Vanneste ◽  
G. Sauvin ◽  
L. Hansen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document