Severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere system

Author(s):  
Paul Prikryl ◽  
Vojto Rušin ◽  
Pavel Šťastný ◽  
Maroš Turňa ◽  
Martina Zeleňáková

<p>Tropical and extratropical cyclones can intensify into the most destructive weather systems that have significant societal and economic impacts. Rapid intensification of such weather systems has been examined in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It has been shown [1,2] that explosive extratropical cyclones and rapid intensification of tropical cyclones tend to follow arrivals of high-speed solar wind when the MIA coupling is strongest. The coupling generates atmospheric gravity waves (AGWs) that propagate from the high-latitude lower thermosphere both upward and downward [3,4]. In the upper atmosphere, AGWs are observed as traveling ionospheric disturbances. In the lower atmosphere, they can reach the troposphere and be ducted [4] to low latitudes. Despite significantly reduced wave amplitude, but subject to amplification upon over-reflection in the upper troposphere, these AGWs can trigger/release moist instabilities leading to convection and latent heat release, which is the energy driving the storms. The release of conditional symmetric instability is known to initiate slantwise convection producing rain/snow bands in extratropical cyclones. Severe weather, including severe winter storms, heavy snowfall and rainfall events, have been examined in the context of MIA coupling [5]. The results indicate a tendency of significant weather events, particularly if caused by low pressure systems in winter, to follow arrivals of solar wind high-speed streams from coronal holes. In the present paper we review the published results and provide further evidence to support them. This includes the occurrence of heavy rainfall events and flash floods, as well as the rapid intensification of recent hurricanes and typhoons, with the goal to identify sources of AGWs at high latitudes that may play a role in triggering convective bursts potentially leading to such events.</p><p>[1] Prikryl P., et al., J. Atmos. Sol.-Terr. Phys., 149, 219–231, 2016.</p><p>[2] Prikryl P., et al., J. Atmos. Sol.-Terr. Phys., 183, 36–60, 2019.</p><p>[3] Prikryl P., et al., Ann. Geophys., 23, 401–417, 2005.</p><p>[4] Mayr H.G., et al., J. Geophys. Res., 89, 10929–10959, 1984.</p><p>[5] Prikryl P., et al., J. Atmos. Sol.-Terr. Phys., 171, 94–110, 2018.</p>

2009 ◽  
Vol 27 (1) ◽  
pp. 1-30 ◽  
Author(s):  
P. Prikryl ◽  
V. Rušin ◽  
M. Rybanský

Abstract. A sun-weather correlation, namely the link between solar magnetic sector boundary passage (SBP) by the Earth and upper-level tropospheric vorticity area index (VAI), that was found by Wilcox et al. (1974) and shown to be statistically significant by Hines and Halevy (1977) is revisited. A minimum in the VAI one day after SBP followed by an increase a few days later was observed. Using the ECMWF ERA-40 re-analysis dataset for the original period from 1963 to 1973 and extending it to 2002, we have verified what has become known as the "Wilcox effect" for the Northern as well as the Southern Hemisphere winters. The effect persists through years of high and low volcanic aerosol loading except for the Northern Hemisphere at 500 mb, when the VAI minimum is weak during the low aerosol years after 1973, particularly for sector boundaries associated with south-to-north reversals of the interplanetary magnetic field (IMF) BZ component. The "disappearance" of the Wilcox effect was found previously by Tinsley et al. (1994) who suggested that enhanced stratospheric volcanic aerosols and changes in air-earth current density are necessary conditions for the effect. The present results indicate that the Wilcox effect does not require high aerosol loading to be detected. The results are corroborated by a correlation with coronal holes where the fast solar wind originates. Ground-based measurements of the green coronal emission line (Fe XIV, 530.3 nm) are used in the superposed epoch analysis keyed by the times of sector boundary passage to show a one-to-one correspondence between the mean VAI variations and coronal holes. The VAI is modulated by high-speed solar wind streams with a delay of 1–2 days. The Fourier spectra of VAI time series show peaks at periods similar to those found in the solar corona and solar wind time series. In the modulation of VAI by solar wind the IMF BZ seems to control the phase of the Wilcox effect and the depth of the VAI minimum. The mean VAI response to SBP associated with the north-to-south reversal of BZ is leading by up to 2 days the mean VAI response to SBP associated with the south-to-north reversal of BZ. For the latter, less geoeffective events, the VAI minimum deepens (with the above exception of the Northern Hemisphere low-aerosol 500-mb VAI) and the VAI maximum is delayed. The phase shift between the mean VAI responses obtained for these two subsets of SBP events may explain the reduced amplitude of the overall Wilcox effect. In a companion paper, Prikryl et al. (2009) propose a new mechanism to explain the Wilcox effect, namely that solar-wind-generated auroral atmospheric gravity waves (AGWs) influence the growth of extratropical cyclones. It is also observed that severe extratropical storms, explosive cyclogenesis and significant sea level pressure deepenings of extratropical storms tend to occur within a few days of the arrival of high-speed solar wind. These observations are discussed in the context of the proposed AGW mechanism as well as the previously suggested atmospheric electrical current (AEC) model (Tinsley et al., 1994), which requires the presence of stratospheric aerosols for a significant (Wilcox) effect.


2020 ◽  
Author(s):  
James M. Weygand ◽  
Paul Prikryl ◽  
Reza Ghoddousi-Fard ◽  
Lidia Nikitina ◽  
Bharat S. R. Kunduri

<p>High-speed streams (HSS) from coronal holes dominate solar wind structure in the absence of coronal mass ejections during solar minimum and the descending branch of solar cycle. Prominent and long-lasting coronal holes produce intense co-rotating interaction regions (CIR) on the leading edge of high-speed plasma streams that cause recurrent ionospheric disturbances and geomagnetic storms. Through solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system they affect the ionosphere and neutral atmosphere at high latitudes, and, at mid to low latitudes, by the transmission of the electric fields [1] and propagation of atmospheric gravity waves from the high-latitude lower thermosphere [2].</p><p>The high-latitude ionospheric structure, caused by precipitation of energetic particles, strong ionospheric currents and convection, results in changes of the GPS total electron content (TEC) and rapid variations of GPS signal amplitude and phase, called scintillation [3]. The GPS phase scintillation is observed in the ionospheric cusp, polar cap and auroral zone, and is particularly intense during geomagnetic storms, substorms and auroral breakups. Phase scintillation index is computed for a sampling rate of 50 Hz by specialized GPS scintillation receivers from the Canadian High Arctic Ionospheric Network (CHAIN). A proxy index of phase variation is obtained from dual frequency measurements of geodetic-quality GPS receivers sampling at 1 Hz, which include globally distributed receivers of the RT-IGS network that are monitored by the Canadian Geodetic Survey in near-real-time [4]. Temporal and spatial changes of TEC and phase variations following the arrivals of HSS/CIRs [5] are investigated in the context of ionospheric convection and equivalent ionospheric currents derived from  a ground magnetometer network using the spherical elementary current system method [6,7].</p><p>The Joule heating and Lorentz forcing in the high-latitude lower thermosphere have long been recognized as sources of internal atmospheric gravity waves (AGWs) [2] that propagate both upward and downward, thus providing vertical coupling between atmospheric layers. In the ionosphere, they are observed as traveling ionospheric disturbances (TIDs) using various techniques, e.g., de-trended GPS TEC maps [8].</p><p>In this paper we examine the influence on the Earth’s ionosphere and atmosphere of a long-lasting HSS/CIRs from recurrent coronal holes at the end of solar cycles 23 and 24. The solar wind MIA coupling, as represented by the coupling function [9], was strongly increased during the arrivals of these HSS/CIRs.</p><p> </p><p>[1] Kikuchi, T. and K. K. Hashimoto, Geosci. Lett. , 3:4, 2016.</p><p>[2] Hocke, K. and K. Schlegel, Ann. Geophys., 14, 917–940, 1996.</p><p>[3] Prikryl, P., et al., J. Geophys. Res. Space Physics, 121, 10448–10465, 2016.</p><p>[4] Ghoddousi-Fard et al., Advances in Space Research, 52(8), 1397-1405, 2013.</p><p>[5] Prikryl et al. Earth, Planets and Space, 66:62, 2014.</p><p>[6] Amm O., and A. Viljanen, Earth Planets Space, 51, 431–440, 1999.</p><p>[7] Weygand J.M., et al., J. Geophys. Res., 116, A03305, 2011.</p><p>[8] Tsugawa T., et al., Geophys. Res. Lett., 34, L22101, 2007.</p><p>[9] Newell P. T., et al., J. Geophys. Res., 112, A01206, 2007.</p>


2020 ◽  
Author(s):  
Lidia Nikitina ◽  
Paul Prikryl ◽  
Shun-Rong Zhang

<p>Convective bursts have been linked to intensification of tropical cyclones [1]. We consider a possibility of convective bursts being triggered by aurorally-generated atmospheric gravity waves (AGWs) that may play a role in the intensification process of tropical cyclones [2]. A two-dimensional barotropic approximation is used to obtain asymptotic solutions representing propagation of vortex waves [3] launched in tropical cyclones by quasi-periodic convective bursts. The absorption of vortex waves by the mean flow and formation of the secondary eyewall lead to a process of an eyewall replacement cycle that is known to cause changes in tropical cyclone intensity [4]. Rapid intensification of hurricanes and typhoons from 1995-2018 is examined in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. In support of recently published results [2] it is shown that rapid intensification of TCs tend to follow arrival of high-speed solar wind when the MIA coupling is strongest. The coupling generates internal gravity waves in the atmosphere that propagate from the high-latitude lower thermosphere both upward and downward. In the lower atmosphere, they can be ducted [5] and reach tropical troposphere. Despite their significantly reduced amplitude, but subject to amplification upon over-reflection in the upper troposphere, these AGWs can trigger/release moist instabilities leading to convection and latent heat release. A possibility of initiation of convective bursts by aurorally generated AGWs is investigated. Cases of rapid intensification of recent tropical cyclones provide further evidence to support the published results [2].</p><p>References</p><p>[1] Steranka et al., Mon. Weather Rev., 114, 1539-1546, 1986.</p><p>[2] Prikryl et al., J. Atmos. Sol.-Terr. Phys., 2019.</p><p>[3] Nikitina L.V., Campbell L.J., Stud. Appl. Math., 135, 377–446, 2015.</p><p>[4] Willoughby H.E., et al., J. Atmos. Sci., 39, 395–411, 1982.</p><p>[5] Mayr H.G., et al., J. Geophys. Res., 89, 10929–10959, 1984.</p>


2020 ◽  
Vol 638 ◽  
pp. A68 ◽  
Author(s):  
S. G. Heinemann ◽  
V. Jerčić ◽  
M. Temmer ◽  
S. J. Hofmeister ◽  
M. Dumbović ◽  
...  

Context. Understanding the evolution of coronal holes is especially important when studying the high-speed solar wind streams that emanate from them. Slow- and high-speed stream interaction regions may deliver large amounts of energy into the Earth’s magnetosphere-ionosphere system, cause geomagnetic storms, and shape interplanetary space. Aims. By statistically investigating the long-term evolution of well-observed coronal holes we aim to reveal processes that drive the observed changes in the coronal hole parameters. By analyzing 16 long-living coronal holes observed by the Solar Dynamic Observatory, we focus on coronal, morphological, and underlying photospheric magnetic field characteristics, and investigate the evolution of the associated high-speed streams. Methods. We use the Collection of Analysis Tools for Coronal Holes to extract and analyze coronal holes using 193 Å EUV observations taken by the Atmospheric Imaging Assembly as well as line–of–sight magnetograms observed by the Helioseismic and Magnetic Imager. We derive changes in the coronal hole properties and look for correlations with coronal hole evolution. Further, we analyze the properties of the high–speed stream signatures near 1AU from OMNI data by manually extracting the peak bulk velocity of the solar wind plasma. Results. We find that the area evolution of coronal holes shows a general trend of growing to a maximum followed by a decay. We did not find any correlation between the area evolution and the evolution of the signed magnetic flux or signed magnetic flux density enclosed in the projected coronal hole area. From this we conclude that the magnetic flux within the extracted coronal hole boundaries is not the main cause for its area evolution. We derive coronal hole area change rates (growth and decay) of (14.2 ± 15.0)×108 km2 per day showing a reasonable anti-correlation (ccPearson = −0.48) to the solar activity, approximated by the sunspot number. The change rates of the signed mean magnetic flux density (27.3 ± 32.2 mG day−1) and the signed magnetic flux (30.3 ± 31.5 1018 Mx day−1) were also found to be dependent on solar activity (ccPearson = 0.50 and ccPearson = 0.69 respectively) rather than on the individual coronal hole evolutions. Further we find that the relation between coronal hole area and high-speed stream peak velocity is valid for each coronal hole over its evolution, but we see significant variations in the slopes of the regression lines.


1980 ◽  
Vol 91 ◽  
pp. 105-125
Author(s):  
C. D'Uston ◽  
J. M. Bosqued

In this paper, we briefly review the experimental knowledge gained in the recent years on the interplanetary response to solar long-time scale phenomena such as the coronal magnetic structure and its evolution. Observational evidence that solar wind flow in the outer corona comes from the unipolar diverging magnetic regions of the photosphere is discussed along with relations to coronal holes. High-speed solar wind streams observed within the boundary of interplanetary magnetic sectors are associated with these structures. Their boundaries appear as very narrow velocity shears.


2020 ◽  
Vol 500 (3) ◽  
pp. 2786-2797
Author(s):  
A A Melkumyan ◽  
A V Belov ◽  
M A Abunina ◽  
A A Abunin ◽  
E A Eroshenko ◽  
...  

ABSTRACT The behaviour of the solar wind (SW) proton temperature and velocity and their relationship during Forbush decreases (FDs) associated with various types of solar source – coronal mass ejections (CMEs) and coronal holes (CHs) – have been studied. Analysis of cosmic ray variations, SW temperature, velocity, density, plasma beta, and magnetic field (from 1965–2019) is carried out using three databases: the OMNI database, Variations of Cosmic Rays database (IZMIRAN) and Forbush Effects & Interplanetary Disturbances database (IZMIRAN). Comparison of the observed SW temperature (T) and velocity (V) for the undisturbed SW allows us to derive a formula for the expected SW temperature (Texp, the temperature given by a T–V formula, if V is the observed SW speed). The results reveal a power-law T–V dependence with a steeper slope for low speeds (V < 425 km s−1, exponent = 3.29 ± 0.02) and flatter slope for high speeds (V > 425 km s−1, exponent = 2.25 ± 0.02). A study of changes in the T–V dependence over the last five solar cycles finds that this dependence varies with solar activity. The calculated temperature index KT = T/Texp can be used as an indicator of interplanetary and solar sources of FDs. It usually has abnormally large values in interaction regions of different-speed SW streams and abnormally low values inside magnetic clouds (MCs). The results obtained help us to identify the different kinds of interplanetary disturbance: interplanetary CMEs, sheaths, MCs, corotating interaction regions, high-speed streams from CHs, and mixed events.


2020 ◽  
Vol 495 (2) ◽  
pp. 2170-2178 ◽  
Author(s):  
Vojtech Rušin ◽  
Paul Prikryl ◽  
Emil A Prikryl

ABSTRACT Light and dark adaptation and luminance contrast enhancement are well-known characteristics of human vision that allow us to observe a wide range of light intensity not fully captured in standard camera images. The naked-eye observations of total eclipses, some recorded with spectacular detail in artists’ paintings, reveal structure that is consistent with images obtained by telescopes equipped with recording media. The actual shape of the corona during a total eclipse depends not only on the phase of the solar cycle but, as can be simply demonstrated, also on the day-to-day variability and spatial distribution of coronal intensity that is determined by solar surface magnetic fields, including the locations of coronal holes that are the sources of high-speed solar wind causing geomagnetic storms. The latter were very similar for the eclipses in 1932, 1994, and 2017, which is the main reason why the naked-eye observations, as well as the processed images (1994 and 2017), of the white-light corona displayed very similar shapes. White-light corona image processing is a useful technique to enhance the contrast to observe fine-scale structure that is consistent with the physics of the solar atmosphere shaped by the magnetic field drawn out into the interplanetary space by solar wind.


1980 ◽  
Vol 91 ◽  
pp. 499-502
Author(s):  
H. Washimi ◽  
T. Kakinuma ◽  
M. Kojima

It has been confirmed that the high-speed solar wind flows out of the coronal holes at low latitudes, where the magnetic fields open and the temperature is low (e.g., Krieger et al. 1973). But there has not been direct observation of the solar wind out of the polar regions of corona. We report here that the observations of interplanetary scintillation (IPS) show the existence of the high-speed flow of 800 km/s out of the polar coronal regions and the well-coincidence to the model of the coronal holes extending from the polar regions.


2020 ◽  
Author(s):  
Timofey Sagitov ◽  
Roman Kislov

<p>High speed streams originating from coronal holes are long-lived plasma structures that form corotating interaction regions (CIRs) or stream interface regions (SIRs) in the solar wind. The term CIR is used for streams existing for at least one solar rotation period, and the SIR stands for streams with a shorter lifetime. Since the plasma flows from coronal holes quasi-continuously, CIRs/SIRs simultaneously expand and rotate around the Sun, approximately following the Parker spiral shape up to the Earth’s orbit.</p><p>Coronal hole streams rotate not only around the Sun but also around their own axis of simmetry, resembling a screw. This effect may occur because of the following mechanisms: (1) the existence of a difference between the solar wind speed at different sides of the stream, (2) twisting of the magnetic field frozen into the plasma, and  (3) a vortex-like motion of the edge of the mothering coronal hole at the Sun. The screw type of the rotation of a CIR/SIR can lead to centrifugal instability if CIR/SIR inner layers have a larger angular velocity than the outer. Furthermore, the rotational plasma movement and the stream distortion can twist magnetic field lines. The latter contributes to the pinch effect in accordance with a well-known criterion of Suydam instability (Newcomb, 1960, doi: 10.1016/0003-4916(60)90023-3). Owing to the presence of a cylindrical current sheet at the boundary of a coronal hole, conditions for tearing instability can also appear at the CIR/SIR boundary. Regardless of their geometry, large scale current sheets are subject to various instabilities generating plasmoids. Altogether, these effects can lead to the formation of a turbulent region within CIRs/SIRs, making them filled with current sheets and plasmoids. </p><p>We study a substructure of CIRs/SIRs, characteristics of their rotation in the solar wind, and give qualitative estimations of possible mechanisms which lead to splitting of the leading edge a coronal hole flow and consequent formation of current sheets within CIRs/SIRs.</p>


Sign in / Sign up

Export Citation Format

Share Document