scholarly journals The 4.2 ka cal BP major eruption of Cerro Blanco, Central Andes

Author(s):  
Jose-Luis Fernandez-Turiel ◽  
Francisco-Jose Perez-Torrado ◽  
Alejandro Rodríguez-Gonzalez ◽  
Norma Ratto ◽  
Marta Rejas ◽  
...  

<p>The major eruption of the Cerro Blanco Volcanic Complex (CBVC), in the Central Volcanic Zone of the Andes, NW Argentina, dated at 4410–4150 a cal BP, was investigated confirming that is the most important of the three major Holocene felsic eruptive events identified in the southern Puna (Fernandez-Turiel et al., 2019). Identification of pre–, syn–, and post–caldera products of CBVC allowed us to estimate the distribution of the Plinian fallout during the paroxysmal syn–caldera phase of the eruption. Results provide evidence for a major rhyolitic explosive eruption that spread volcanic deposits over an area of about 500,000 km<sup>2</sup>, accumulating >100 km<sup>3</sup> of tephra (bulk volume). This last value exceeds the lower threshold of Volcanic Explosive Index (VEI) of 7. Ash-fall deposits mantled the region at distances >400 km from source and thick pyroclastic-flow deposits filled neighbouring valleys up to several tens of kilometres from the vent. This eruption is the largest documented during the past five millennia in the Central Volcanic Zone of the Andes, and is probably one of the largest Holocene explosive eruptions in the world.</p><p>The implications of the findings of the present work reach far beyond having some chronostratigraphic markers. Further interdisciplinary research should be performed in order to draw general conclusions on these impacts in local environments and the disruptive consequences for local communities. This is invaluable not just for understanding how the system may have been affected over time, but also for evaluating volcanic hazards and risk mitigation measures related to potential future large explosive eruptions.</p><p>Financial support was provided by the ASH and QUECA Projects (MINECO, CGL2008–00099 and CGL2011–23307). We acknowledge the assistance in the analytical work of labGEOTOP Geochemistry Laboratory (infrastructure co–funded by ERDF–EU Ref. CSIC08–4E–001) and DRX Laboratory (infrastructure co–funded by ERDF–EU Ref. CSIC10–4E–141) (J. Ibañez, J. Elvira and S. Alvarez) of ICTJA-CSIC, and EPMA and SEM Laboratories of CCiTUB (X. Llovet and J. Garcia Veigas). This study was carried out in the framework of the Research Consolidated Groups GEOVOL (Canary Islands Government, ULPGC) and GEOPAM (Generalitat de Catalunya, 2017 SGR 1494).</p><p> </p><p>Fernandez–Turiel, J.L., Perez–Torrado, F.J., Rodriguez–Gonzalez, A., Saavedra, J., Carracedo, J.C., Rejas, M., Lobo, A., Osterrieth, M., Carrizo, J.I., Esteban, G., Gallardo, J., Ratto, N., 2019. The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions. Estudios Geologicos 75, e088.</p>

2018 ◽  
Vol 353 ◽  
pp. 83-94 ◽  
Author(s):  
Carlos Cardona ◽  
Andrés Tassara ◽  
Fernando Gil-Cruz ◽  
Luis Lara ◽  
Sergio Morales ◽  
...  

2005 ◽  
Vol 46 (11) ◽  
pp. 2225-2252 ◽  
Author(s):  
PABLO SAMANIEGO ◽  
HERVÉ MARTIN ◽  
MICHEL MONZIER ◽  
CLAUDE ROBIN ◽  
MICHEL FORNARI ◽  
...  

Author(s):  
Tony Rey ◽  
Frederic Leone ◽  
Stéphanie Defossez ◽  
Monique Gherardi ◽  
Fleurice Parat

The objective of our study is to establish an assessment of four volcanic hazards in a country threatened by the eruption of the OlDoinyo Lengai volcano. The last major eruption dates back to 2007-2008 but stronger activity in 2019 has revived the memory of volcanic threats to the Maasai and Bantu communities and human activities (agro-pastoral and tourism). The methods chosen have had to be adapted to the scarce and incomplete data. The volcanic hazards and their probability of occurrence were analysed on the basis of data available in the scientific literature and were supplemented by two field missions combining geography and hydro-geomorphology. Our study enabled us to map the hazards of ash fall, lava flows, lahars and avalanches of debris. Each hazard was spatialised by being ascribed an intensity. They are sometimes synchronous with the eruption sometimes they occur several months or years after a volcanic eruption. The results are the first step towards developing a volcanic risk management strategy, especially for the pastoral communities living around Lengai and for the growing tourist activities in this area.


2021 ◽  
Vol 13 (12) ◽  
pp. 6596
Author(s):  
Riccardo Ceccato ◽  
Riccardo Rossi ◽  
Massimiliano Gastaldi

The diffusion of the COVID-19 pandemic has induced fundamental changes in travel habits. Although many previous authors have analysed factors affecting observed variations in travel demand, only a few works have focused on predictions of future new normal conditions when people will be allowed to decide whether to travel or not, although risk mitigation measures will still be enforced on vehicles, and innovative mobility services will be implemented. In addition, few authors have considered future mandatory trips of students that constitute a great part of everyday travels and are fundamental for the development of society. In this paper, logistic regression models were calibrated by using data from a revealed and stated-preferences mobility survey administered to students and employees at the University of Padova (Italy), to predict variables impacting on their decisions to perform educational and working trips in the new normal phase. Results highlighted that these factors are different between students and employees; furthermore, available travel alternatives and specific risk mitigation measures on vehicles were found to be significant. Moreover, the promotion of the use of bikes, as well as bike sharing, car pooling and micro mobility among students can effectively foster sustainable mobility habits. On the other hand, countermeasures on studying/working places resulted in a slight effect on travel decisions.


1980 ◽  
Vol 13 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Alan N. Federman ◽  
Steven N. Carey

AbstractFive widespread tephra layers are found in late Quaternary sediments (0–130,000 yr B.P.) of the Eastern Mediterranean Sea. These layers have been correlated among abyssal cores and to their respective terrestrial sources by electron-probe microanalysis of glass and pumice shards. Major element variations are sufficient to discriminate unambiguously between the five major layers. Oxygen isotope stratigraphy in one of the cores studied was used to data four of the five layers. Two of the widespread layers are derived from explosive eruptions of the Santorini volcanic complex: the Minoan Ash (3370 yr B.P.) and the Acrotiri Ignimbrite (18,000 yr B.P.). An additional layer, found in one core only, is most likely correlated to the Middle Pumice Series of Santorini (approximately 100,000 yr B.P.). Two layers are correlated to deposits on the islands of Yali and Kos and date to 31,000 and 120,000 yr B.P., respectively. One layer originated from the Neapolitan area of Italy 38,000 yr B.P.


2018 ◽  
Vol 25 (2) ◽  
pp. 90-101 ◽  
Author(s):  
Julian S H Kwan ◽  
Harris W K Lam ◽  
Charles W W Ng ◽  
Nelson T K Lam ◽  
S L Chan ◽  
...  

2002 ◽  
Vol 115 (1-4) ◽  
pp. 187-221 ◽  
Author(s):  
Marc Legault ◽  
Michel Gauthier ◽  
Michel Jébrak ◽  
Don W. Davis ◽  
François Baillargeon

Sign in / Sign up

Export Citation Format

Share Document