Use of turbidity measurements to monitor suspended sediment loads on the Congo River

Author(s):  
Catherine Mushi ◽  
Preksedis Marko Ndomba ◽  
Jeffrey Neal ◽  
Jules Beya ◽  
Mark Trigg

<p>Recent mapping of sediment sources and erosion processes in the Congo basin show that sediment loads may be higher than previously estimated. Stark temporal changes in water turbidity in some of the tributaries observed by satellite images over the past 25 years indicate a need for closer monitoring of sediment load transported in the River. Turbidity sensors present an attractive option for sediment monitoring due to their ability to provide automated continuous time series data for estimation of suspended sediment concentration and suspended sediment fluxes in rivers; an attribute that is particularly important for remote rivers like the Congo. Continuous in-situ turbidity measurements were made using an OBS-501 turbidity sensor at the Kutu Moke monitoring site on the Kasai River, a major tributary of the Congo River between July 2018 and August 2019. The sensor infers turbidity by detecting the intensity of light scattered from suspended particles in water. We explore a field calibration of turbidity measurements with over 120 simultaneous suspended sediment concentration (SSC) measurements for the same period. Sediment loads estimated using high frequency turbidity data measurements (hourly) are then compared to loads estimated using classical sediment rating curves to establish if the turbidity provides a better representation of the suspended sediment load.</p>

2013 ◽  
Vol 11 (4) ◽  
pp. 457-466

Artificial neural networks are one of the advanced technologies employed in hydrology modelling. This paper investigates the potential of two algorithm networks, the feed forward backpropagation (BP) and generalized regression neural network (GRNN) in comparison with the classical regression for modelling the event-based suspended sediment concentration at Jiasian diversion weir in Southern Taiwan. For this study, the hourly time series data comprised of water discharge, turbidity and suspended sediment concentration during the storm events in the year of 2002 are taken into account in the models. The statistical performances comparison showed that both BP and GRNN are superior to the classical regression in the weir sediment modelling. Additionally, the turbidity was found to be a dominant input variable over the water discharge for suspended sediment concentration estimation. Statistically, both neural network models can be successfully applied for the event-based suspended sediment concentration modelling in the weir studied herein when few data are available.


2020 ◽  
Vol 13 (3) ◽  
pp. 1248 ◽  
Author(s):  
Solange Cavalcanti de Melo ◽  
José Coelho de Araújo Filho ◽  
Renata Maria Caminha Mendes de Oliveira Carvalho

RESUMOO conhecimento da análise quantitativa das concentrações de sedimentos em suspensão transportados pelo rio São Francisco bem como sua relação com as vazões é de muita importância, pois pode auxiliar na identificação dos efeitos da intervenção humana e ou ocasionados pelas condições naturais da região. As regiões a jusante dos barramentos no rio São Francisco apresentam como principal consequência a regularização das vazões e a diminuição das concentrações de sedimentos. O objetivo da pesquisa foi determinar as curvas-chave de sedimentos em suspensão (CCS) nas estações fluviométricas instaladas no Baixo São Francisco (BSF) após a barragem de Xingó. Para o estabelecimento dessas curvas foram utilizados dados de vazão e concentração de sedimentos em suspensão, obtidos do sistema Hidroweb no site da Agência Nacional da Água (ANA) no período de 1999 a 2018. Foram obtidas CCS para todo o trecho do BSF as quais apresentaram bons coeficientes de determinação. Na análise dos dados também foi possível perceber que nos últimos anos, desde 2013 houve redução gradativa das vazões disponibilizadas na barragem de Xingó. Consequentemente, houve também a redução gradativa das cargas de sedimentos em suspensão geradas nas estações de Piranhas, Traipu e Propriá, ou seja, os menores valores já registrados no BSF correspondendo as menores séries históricas tanto de vazão como de sedimentos em suspensão.  Keys curves of sediment discharges in suspension in the Lower São Francisco A B S T R A C TThe knowledge of the quantitative analysis of suspended sediment concentrations carried by the São Francisco River as well as its relation with the flows is of great importance, since it can help in the identification of the effects of human intervention and/or caused by the natural conditions of the region. In the downstream regions of the São Francisco riverbanks, the main consequence was the regularization of flow rates and the reduction of sediment concentrations. The objective of the research was to determine the key curves of suspended sediments (CCS) at the fluviometric stations installed in the lower São Francisco river after Xingó dam. For the evaluation, flow data and suspended sediment concentration were used. These data were obtained from the Hidroweb system on the website of the National Water Agency (ANA) from 1999 to 2018. CCS were plotted for all stretches and presented good coefficients of determination (R2). Based on the analysis of the data it was also possible to notice that in recent years, since 2013 there has been a gradual reduction of the flows available in the Xingó dam. Consequently, there was also a gradual reduction of suspended sediment loads generated at the Piranhas, Traipu and Propriá stations, that is, the lowest values already recorded in lower São Francisco, corresponding to the lower historical series of both discharge and suspended sediments.Keywords: dam, flow, sediments 


2013 ◽  
Vol 1 (No. 1) ◽  
pp. 23-31 ◽  
Author(s):  
Bečvář Martin

Sediment is a natural component of riverine environments and its presence in river systems is essential. However, in many ways and many places river systems and the landscape have been strongly affected by human activities which have destroyed naturally balanced sediment supply and sediment transport within catchments. As a consequence a number of severe environmental problems and failures have been identified, in particular the link between sediments and chemicals is crucial and has become a subject of major scientific interest. Sediment load and sediment concentration are therefore highly important variables that may play a key role in environment quality assessment and help to evaluate the extent of potential adverse impacts. This paper introduces a methodology to predict sediment loads and suspended sediment concentrations (SSC) in large European river basins. The methodology was developed within an MSc research study that was conducted in order to improve sediment modelling in the GREAT-ER point source pollution river modelling package. Currently GREAT-ER uses suspended sediment concentration of 15 mg/l for all rivers in Europe which is an obvious oversimplification. The basic principle of the methodology to predict sediment concentration is to estimate annual sediment load at the point of interest and the amount of water that transports it. The amount of transported material is then redistributed in that corresponding water volume (using the flow characteristic) which determines sediment concentrations. Across the continent, 44 river basins belonging to major European rivers were investigated. Suspended sediment concentration data were collected from various European basins in order to obtain observed sediment yields. These were then compared against the traditional empiric sediment yield estimators. Three good approaches for sediment yield prediction were introduced based on the comparison. The three approaches were applied to predict annual sediment yields which were consequently translated into suspended sediment concentrations. SSC were predicted at 47 locations widely distributed around Europe. The verification of the methodology was carried out using data from the Czech Republic. Observed SSC were compared against the predicted ones which validated the methodology for SSC prediction.


2016 ◽  
Vol 18 (1) ◽  
pp. 47-58
Author(s):  
Sanja MANOJLOVIĆ ◽  
Predrag MANOJLOVIĆ ◽  
Mrdjan DJOKIĆ

The study is concerned with determination of the trend of water discharge, suspended sediment concentration and sediment load in the most downstream profile of the Velika Morava River in the period 1967-2007. The gradual trend test (Mann–Kendall test – MK test) and abrupt change test (Pettitt test) have been employed on annual, seasonal and monthly water discharge, suspended sediment concentration and suspended sediment load for the given time series. Both the Mann–Kendall and Pettitt tests indicate that water discharge showed no significant annual trend or abrupt shift. However, annual suspended sediment concentration and sediment load showed significant decreasing trends (α=0.001). The average decrease of suspended sediment load transport amounted to 3.15 t/km2/yr. The Pettitt test results showed that the change-point year was detected in 1982. The average specific sediment load amounted to 134.6 t/km2/yr before the transition year, and 36.5 t/km2/yr after the transition year, i.e., it was reduced by 73 %. In the intra-annual distribution, the MK test results indicate that the most pronounced decreasing trend (α=0.001) of the sediment load is during summer and winter. Strong seasonal and monthly variability in sediment load was found. Sediment was strongly transported during spring months, in the period of frequent flood events. Almost 50% of the annual sediment is transported during March, April and May. Analysis of the discharge and suspended sediment concentration relationship revealed the existence of hysteresis loop in the shape of figure eight. The results of this study confirm the complex and heterogeneous nature of sediment response in the Velika Morava River.


2014 ◽  
Vol 7 (1-2) ◽  
pp. 23-28 ◽  
Author(s):  
Aderemi Adediji ◽  
Olutoyin A. Fashae

Abstract The sediment dynamics in a small 2nd order catchment of River Awba in the territory of the University of Ibadan, Nigeria was investigated between January and December 2012. The river was gauged by daily measurements of water level as well as sampling of water for determination of suspended sediment load. In this regard, apart from weekly sample, twelve (12) storm flow events which occurred during the day were sampled for determination of suspended sediment concentration. The results showed that during the storms the suspended sediment concentration varied between 636 mg/l in May and 3641.5 mg/l in September, with a mean of 2136.8 mg/l. Also, the value of monthly suspended sediment yield ranged from 10.85 kg in January to 288.4 kg in October with a mean of 89.5 kg. The variability in monthly sediment load closely followed the trend of monthly rainfall in the study area. However, in order to minimize the storm runoff and sediment load generated from the rainstorms events, the paved surfaces within the study catchment should be grassed with the planting of some few tree species. This could further reduce the rate of floods occurrence.


1979 ◽  
Vol 23 (89) ◽  
pp. 247-257 ◽  
Author(s):  
David N. Collins

Abstract Suspended-sediment concentrations in melt waters from the Gornera, Gornergletscher, Switzerland, were determined at hourly intervals for periods during the ablation seasons of 1974 and 1975. Rapid erratic fluctuations of suspended-sediment concentration produced peaks which occurred both before and after highest daily flows. Clockwise daily hysteresis rating loops between sediment concentration and discharge included many involutions. Suspended-sediment-concentration-discharge rating curves were different for rising and falling limbs of individual diurnal hydrographs and varied from day to day. Close-interval measurements of sediment concentration and discharge records allow interpretation of the nature of ice–water–sediment interactions at the bed of an Alpine glacier. At Gornergletscher, subglacial sediment is delivered to melt waters flowing in the smaller basal conduits, which often change course suddenly, entraining unworked sediment stored at the bed. During diurnal discharge maxima, sediment concentration in the Gornera is reduced because the rate of increase of water volume outstrips the rate of supply of sediment. The drainage of the ice-dammed lake Gornersee, producing exceptionally high flows, extended the drainage network over large areas of the glacier bed, and evacuated much sediment.


2003 ◽  
Vol 34 (3) ◽  
pp. 221-244 ◽  
Author(s):  
Pratap Singh ◽  
K. S. Ramasatri ◽  
Naresh Kumar ◽  
N. K. Bhatnagar

Estimation of sediment load from glacierized basins is very important for planning, designing, installation and operation of hydro-power projects, including management of reservoirs. In the present study, an assessment of suspended sediment concentration, load, yield and erosion rate has been undertaken for the Dokriani Glacier drainage basin located in the Garhwal Himalayas. About 60% of the total drainage area of this basin is glacierized. Data were collected for four ablation seasons (1995-1998). The mean daily suspended sediment concentrations for June, July, August and September were 452, 933, 965 and 275 mg 1-1, respectively, indicating highest suspended sediment concentration in August, followed by July. Similar trends were also found for the sediment load and about 88% of the total suspended sediment load of the melt period was transported during the months of July and August. Sediment yield for the study basin was computed to be about 2,800 t km-2 yr-1, which is comparable with glacierized basins (10-30% glacierized) in the Pamir region. For the entire ablation period, the erosion from the Dokriani Glacier basin is estimated to be about 1.0 mm. There was a poor relationship between suspended sediment concentration and discharge. The average percentages of clay, silt and sand were found to be 1.4, 67.3 and 31.3%, respectively, which suggest maximum content of silt followed by sand. There was limited variation in the content of clay, silt and sand in the suspended sediment during the ablation period.


2013 ◽  
Vol 45 (2) ◽  
pp. 292-306 ◽  
Author(s):  
Manohar Arora ◽  
Rakesh Kumar ◽  
Naresh Kumar ◽  
Jatin Malhotra

An assessment of suspended sediment concentration (SSC), load, yield and erosion rate has been undertaken for the Gangotri Glacier drainage basin (nearly 50% glaciated) located in the Garhwal Himalayas. Data were collected for four ablation seasons (2008–2011). Mean monthly SSCs, for May, June, July, August and September during the study period was 1,011, 1,384, 1,916, 1,675 and 567 ppm, respectively, indicating highest SSC in July, followed by August. For the entire melt season, the mean daily SSC was computed to be 1,320 ppm. Similar trends were also found for the sediment load and about 67% of the total suspended sediment load of the melt period was transported during the months of July and August. Sediment yield for the study basin was computed to be about 2,863 tonnes km–2yr–1. For the entire ablation period, the erosion from the Gangotri Glacier basin is estimated to be about 1.0 mm. There was a poor relationship between SSC and discharge and hysteresis effect was prominent in the melt stream. The average percentages of clay, silt and sand were found to be 3, 67 and 30%, respectively, which suggest maximum content of silt followed by sand.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Katarzyna SKOLASIŃSKA ◽  
Bogumił NOWAK ◽  
Katarzyna BRADTKE

Fluctuations in suspended sediment concentration (SSC) has been investigated in the Warta River (western Poland), based on data obtained for the period 1961–1980 from three gauge stations located in upstream, middle-stream and downstream areas. Over the two decades, the SSC values demonstrated wide fluctuations and an overall increase at each gauge station. No significant correlation was generally observed between SSC and discharge but high SSC was found to follow low discharge and increasing temperature during the summer seasons in some years. Measurements of SSC and discharge were used to estimate total annual suspended sediment load (SSL). SSL values were found to increase downstream along with an increase in discharge. SSC decreases along the river course. However, when it comes to changes over time, SSL variability was mainly determined by SSC changes. The maximum SSC values were primarily caused by anthropogenic factors: the disposal of mine wastewater upstream, river training works, increased urbanisation and the intensification of sewage disposal. Where the river catchment has been greatly affected by anthropogenic factors, a denudation index calculated solely based on SSC and discharge does not appear to reflect the actual denudation rate, and must be treated with caution.


Sign in / Sign up

Export Citation Format

Share Document