Towards Operational Downscaling of Low Resolution Wind Fields using Neural Networks

Author(s):  
Michael Kern ◽  
Kevin Höhlein ◽  
Timothy Hewson ◽  
Rüdiger Westermann

<p>Numerical weather prediction models with high resolution (of order kms or less) can deliver very accurate low-level winds. The problem is that one cannot afford to run simulations at very high resolution over global or other large domains for long periods because the computational power needed is prohibitive.</p><p>Instead, we propose using neural networks to downscale low-resolution wind-field simulations (input) to high-resolution fields (targets) to try to match a high-resolution simulation. Based on short-range forecasts of wind fields (at the 100m level) from the ECMWF ERA5 reanalysis, at 31km resolution, and the HRES (deterministic) model version, at 9km resolution, we explore two complementary approaches, in an initial “proof-of-concept” study.</p><p>In a first step, we evaluate the ability of U-Net-type convolutional neural networks to learn a one-to-one mapping of low-resolution input data to high-resolution simulation results. By creating a compressed feature-space representation of the data, networks of this kind manage to encode important flow characteristics of the input fields and assimilate information from additional data sources. Next to wind vector fields, we use topographical information to inform the network, at low and high resolution, and include additional parameters that strongly influence wind-field prediction in simulations, such as vertical stability (via the simple, compact metric of boundary layer height) and the land-sea mask. We thus infer weather-situation and location-dependent wind structures that could not be retrieved otherwise.</p><p>In some situations, however, it will be inappropriate to deliver only a single estimate for the high-resolution wind field. Especially in regions where topographic complexity fosters the emergence of complex wind patterns, a variety of different high-resolution estimates may be equally compatible with the low-resolution input, and with physical reasoning. In a second step, we therefore extend the learning task from optimizing deterministic one-to-one mappings to modelling the distribution of physically reasonable high-resolution wind-vector fields, conditioned on the given low-resolution input. Using the framework of conditional variational autoencoders, we realize a generative model, based on convolutional neural networks, which is able to learn the conditional distributions from data. Sampling multiple estimates of the high-resolution wind vector fields from the model enables us to explore multimodalities in the data and to infer uncertainties in the predictand.</p><p>In a future customer-oriented extension of this proof-of-concept work, we would envisage using a target resolution higher than 9km - say in the 1-4km range - to deliver much better representivity for users. Ensembles of low resolution input data could also be used, to deliver as output an “ensemble of ensembles”, to condense into a meaningful probabilistic format for users. The many exciting applications of this work (e.g. for wind power management) will be highlighted.</p>

2020 ◽  
Vol 16 (5) ◽  
pp. 155014772092048
Author(s):  
Miguel Ángel López-Medina ◽  
Macarena Espinilla ◽  
Chris Nugent ◽  
Javier Medina Quero

The automatic detection of falls within environments where sensors are deployed has attracted considerable research interest due to the prevalence and impact of falling people, especially the elderly. In this work, we analyze the capabilities of non-invasive thermal vision sensors to detect falls using several architectures of convolutional neural networks. First, we integrate two thermal vision sensors with different capabilities: (1) low resolution with a wide viewing angle and (2) high resolution with a central viewing angle. Second, we include fuzzy representation of thermal information. Third, we enable the generation of a large data set from a set of few images using ad hoc data augmentation, which increases the original data set size, generating new synthetic images. Fourth, we define three types of convolutional neural networks which are adapted for each thermal vision sensor in order to evaluate the impact of the architecture on fall detection performance. The results show encouraging performance in single-occupancy contexts. In multiple occupancy, the low-resolution thermal vision sensor with a wide viewing angle obtains better performance and reduction of learning time, in comparison with the high-resolution thermal vision sensors with a central viewing angle.


2013 ◽  
Vol 6 (1) ◽  
pp. 1223-1257
Author(s):  
A. K. Miltenberger ◽  
S. Pfahl ◽  
H. Wernli

Abstract. A module to calculate online trajectories has been implemented into the non-hydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours, online trajectories use the simulated wind field at every model time step (typically less than a minute) to solve the trajectory equation. As a consequence, online trajectories much better capture the short-term temporal fluctuations of the wind field, which is particularly important for mesoscale flows near topography and convective clouds, and they do not suffer from temporal interpolation errors between model output times. The numerical implementation of online trajectories in the COSMO model is based upon an established offline trajectory tool and takes full account of the horizontal domain decomposition that is used for parallelization of the COSMO model. Although a perfect workload balance cannot be achieved for the trajectory module (due to the fact that trajectory positions are not necessarily equally distributed over the model domain), the additional computational costs are fairly small for high-resolution simulations. Various options have been implemented to initialize online trajectories at different locations and times during the model simulation. As a first application of the new COSMO module an Alpine North Föhn event in summer 1987 has been simulated with horizontal resolutions of 2.2 km, 7 km, and 14 km. It is shown that low-tropospheric trajectories calculated offline with one- to six-hourly wind fields can significantly deviate from trajectories calculated online. Deviations increase with decreasing model grid spacing and are particularly large in regions of deep convection and strong orographic flow distortion. On average, for this particular case study, horizontal and vertical positions between online and offline trajectories differed by 50–190 km and 150–750 m, respectively, after 24 h. This first application illustrates the potential for Lagrangian studies of mesoscale flows in high-resolution convection-resolving simulations using online trajectories.


2021 ◽  
Vol 3 ◽  
Author(s):  
Agon Serifi ◽  
Tobias Günther ◽  
Nikolina Ban

Numerical weather and climate simulations nowadays produce terabytes of data, and the data volume continues to increase rapidly since an increase in resolution greatly benefits the simulation of weather and climate. In practice, however, data is often available at lower resolution only, for which there are many practical reasons, such as data coarsening to meet memory constraints, limited computational resources, favoring multiple low-resolution ensemble simulations over few high-resolution simulations, as well as limits of sensing instruments in observations. In order to enable a more insightful analysis, we investigate the capabilities of neural networks to reconstruct high-resolution data from given low-resolution simulations. For this, we phrase the data reconstruction as a super-resolution problem from multiple data sources, tailored toward meteorological and climatological data. We therefore investigate supervised machine learning using multiple deep convolutional neural network architectures to test the limits of data reconstruction for various spatial and temporal resolutions, low-frequent and high-frequent input data, and the generalization to numerical and observed data. Once such downscaling networks are trained, they serve two purposes: First, legacy low-resolution simulations can be downscaled to reconstruct high-resolution detail. Second, past observations that have been taken at lower resolutions can be increased to higher resolutions, opening new analysis possibilities. For the downscaling of high-frequent fields like precipitation, we show that error-predicting networks are far less suitable than deconvolutional neural networks due to the poor learning performance. We demonstrate that deep convolutional downscaling has the potential to become a building block of modern weather and climate analysis in both research and operational forecasting, and show that the ideal choice of the network architecture depends on the type of data to predict, i.e., there is no single best architecture for all variables.


2020 ◽  
Author(s):  
Marie Déchelle-Marquet ◽  
Marina Levy ◽  
Patrick Gallinari ◽  
Michel Crepon ◽  
Sylvie Thiria

<p>Ocean currents are a major source of impact on climate variability, through the heat transport they induce for instance. Ocean climate models have quite low resolution of about 50 km. Several dynamical processes such as instabilities and filaments which have a scale of 1km have a strong influence on the ocean state. We propose to observe and model these fine scale effects by a combination of satellite high resolution SST observations (1km resolution, daily observations) and mesoscale resolution altimetry observations (10km resolution, weekly observations) with deep neural networks. Whereas the downscaling of climate models has been commonly addressed with assimilation approaches, in the last few years neural networks emerged as powerful multi-scale analysis method. Besides, the large amount of available oceanic data makes attractive the use of deep learning to bridge the gap between scales variability.</p><p>This study aims at reconstructing the multi-scale variability of oceanic fields, based on the high resolution NATL60 model of ocean observations at different spatial resolutions: low-resolution sea surface height (SSH) and high resolution SST. As the link between residual neural networks and dynamical systems has recently been established, such a network is trained in a supervised way to reconstruct the high variability of SSH and ocean currents at submesoscale (a few kilometers). To ensure the conservation of physical aspects in the model outputs, physical knowledge is incorporated into the deep learning models training. Different validation methods are investigated and the model outputs are tested with regards to their physical plausibility. The method performance is discussed and compared to other baselines (namely convolutional neural network). The generalization of the proposed method on different ocean variables such as sea surface chlorophyll or sea surface salinity is also examined.</p>


2013 ◽  
Vol 6 (6) ◽  
pp. 1989-2004 ◽  
Author(s):  
A. K. Miltenberger ◽  
S. Pfahl ◽  
H. Wernli

Abstract. A module to calculate online trajectories has been implemented into the nonhydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours, online trajectories use the simulated resolved wind field at every model time step (typically less than a minute) to solve the trajectory equation. As a consequence, online trajectories much better capture the short-term temporal fluctuations of the wind field, which is particularly important for mesoscale flows near topography and convective clouds, and they do not suffer from temporal interpolation errors between model output times. The numerical implementation of online trajectories in the COSMO-model is based upon an established offline trajectory tool and takes full account of the horizontal domain decomposition that is used for parallelization of the COSMO-model. Although a perfect workload balance cannot be achieved for the trajectory module (due to the fact that trajectory positions are not necessarily equally distributed over the model domain), the additional computational costs are found to be fairly small for the high-resolution simulations described in this paper. The computational costs may, however, vary strongly depending on the number of trajectories and trace variables. Various options have been implemented to initialize online trajectories at different locations and times during the model simulation. As a first application of the new COSMO-model module, an Alpine north foehn event in summer 1987 has been simulated with horizontal resolutions of 2.2, 7 and 14 km. It is shown that low-tropospheric trajectories calculated offline with one- to six-hourly wind fields can significantly deviate from trajectories calculated online. Deviations increase with decreasing model grid spacing and are particularly large in regions of deep convection and strong orographic flow distortion. On average, for this particular case study, horizontal and vertical positions between online and offline trajectories differed by 50–190 km and 150–750 m, respectively, after 24 h. This first application illustrates the potential for Lagrangian studies of mesoscale flows in high-resolution convection-resolving simulations using online trajectories.


10.29007/lcmk ◽  
2018 ◽  
Author(s):  
Marcus Edel ◽  
Joscha Lausch

Inspired by recent work in machine translation and object detection, we introduce an attention-based model that automatically learns to extract information from an image by adaptively assigning its capacity across different portions of the input data and only processing the selected regions of different sizes at high resolution. This is achieved by combining two modules: an attention sub-network which uses a mechanism to model a human-like counting process and a capacity sub-network. This sub-network efficiently identifies input regions for which the attention model output is most sensitive and to which we should devote more capacity and dynamically adapt the size of the region. We focus our evaluation on the Cluttered MNIST, SVHN, and Cluttered GTSRB image datasets. Our findings indicate that the proposed model is able to drastically reduce the number of computations, compared with traditional convolutional neural networks, while maintaining similar or better performance.


2018 ◽  
Author(s):  
Christoph Schlager ◽  
Gottfried Kirchengast ◽  
Juergen Fuchsberger

Abstract. A weather diagnostic application for automatic generation of gridded wind fields in near-real time, recently developed by the authors (Schlager et al., 2017), is applied to the WegenerNet Johnsbachtal (JBT) meteorological station network. This station network contains eleven meteorological stations at elevations from about 600 m to 2200 m in a mountainous region in the north of Styria, Austria. The application generates, based on meteorological observations with a temporal resolution of 10 minutes from the WegenerNet JBT, mean wind and wind gust fields at 10 m and 50 m height levels with a high spatial resolution of 100 × 100 m and a temporal resolution of 30 minutes. These wind field products are automatically stored to the WegenerNet data archives, which also include long-term averaged weather and climate datasets from post-processing. A main purpose of these empirically modeled products is the evaluation of convection-permitting dynamical climate models as well as investigating weather and climate variability on a local scale. The application's performance is evaluated against the observations from meteorological stations for representative weather conditions, for a month including mainly thermally induced wind events (July 2014) and a month with frequently occurring strong wind events (December 2013). The overall statistical agreement, estimated for the vector-mean wind speed, shows a reasonably good modeling performance with somewhat better values for the strong wind conditions. The difference between modeled and observed wind directions depends on the station location, where locations along mountain slopes are particularly challenging. Furthermore, the seasonal statistical agreement was investigated from five-year climate data of the WegenerNet JBT in comparison to nine-year climate data from the high-density WegenerNet meteorological station network Feldbach Region (FBR) analyzed by Schlager et al., (2017)In general, the five-year statistical evaluation for the JBT indicates similar performance as the shorter-term evaluations of the two representative months. Because of the denser WegenerNet FBR network, the statistical results show better performance for this station network. The application can now serve as a valuable tool for intercomparison with and evaluation of wind fields from high-resolution dynamical climate models in both the WegenerNet FBR and JBT regions.


Sign in / Sign up

Export Citation Format

Share Document