Interstellar Probe: The Next Step

Author(s):  
Ralph McNutt ◽  
Mike Gruntman ◽  
Stamatios Krimigis ◽  
Edmond Roelof ◽  
Pontus Brandt ◽  
...  

<p>An “Interstellar Probe” to the nearby interstellar medium has been discussed in the scientific community for almost 60 years. The key concept has always been to depart from the Sun outward “as fast as possible.” Scientific goals have principally focused on heliospheric topics throughout multiple studies, with potential “bonus science” in both astrophysics and planetary science. The passages of Voyagers 1 and 2 into that medium have only raised multiple new questions, rather than “solving” the outstanding question of the interaction of the solar wind with the nearby interstellar medium. In particular, solar activity apparently continues to have an effect on nearby interstellar space, magnetic field changes in crossing from the heliosheath into the local medium are only in magnitude and not direction, and the three-dimensional structure of the energetic neutral atom (ENA) “ribbon” remains unknown. The power levels on the Voyagers continue to decrease toward the operational floor which is likely to be reached within the next five years, limiting the extent of our exploration, and ending heliophysics deep-space measurements beyond the asteroid belt for the indefinite future. The salient question for a dedicated mission is “What can the Interstellar Probe do that no other mission can do?” The answer requires an in-depth look at current capabilities for such a mission, e.g., solar system escape speed, data downlink bandwidth, and mission lifetime with science topics, technological readiness of mission and instrument concepts, and realistic mission costs. To provide technical input to the upcoming Solar and Space Physics Decadal Survey, NASA has contracted with the Johns Hopkins University Applied Physics Laboratory (APL) to execute a “First Pragmatic Interstellar Probe Mission Study.” The effort focuses on near-term engineering readiness (ready for launch by 2030) but also includes input regarding compelling science and associated required measurements and instrumentation, assuming that such a mission would commence during the next Decadal time period. This is not a Science Definition Team (SDT) exercise, but rather an assessment of possibilities. In that spirit, we continue to seek input from across the international space science community regarding potential science goals, measurements, instruments, and their implementation readiness in order to help inform the engineering team in support of a concept mission. We provide a status report on this ongoing effort.</p>

2020 ◽  
Author(s):  
Pontus Brandt ◽  
Elena Provornikova ◽  
Kirby Runyon ◽  
Carey Lisse ◽  
Abigail Rymer ◽  
...  

<p>The global nature of the interaction of the heliosphere and the Local Interstellar Medium (LISM) is among one of the most outstanding space physics problems of today. Ultimately, our magnetic bubble is upheld by the expanding solar wind born in the solar corona that is now accessible by Parker Solar Probe. At the other extreme boundary, a completely new regime of physical interactions is at work that shape the unseen global structure of the entire heliosphere. Voyager 1 and 2 are soon nearing their end of operations inside of 170 AU and their payloads dedicated to planetary science have uncovered a region of space that defies our understanding. At the same time, IBEX and Cassini have obtained complementary “inside-out” ENA images of the heliospheric boundary region that cannot be fully explained.</p> <p>An Interstellar Probe through the heliospheric boundary, in to the LISM would be the first dedicated mission to venture into this largely unexplored frontier of space. With a dedicated suite of in-situ and remote-sensing instrumentation, such a probe would not only open the door for a new regime of space physics acting at the boundary and in other astrospheres, but would also obtain the very first images from the outside of the global structure of the heliosphere that, in context with the in-situ measurements would enable a quantum leap in understanding the global nature of our own habitable astrosphere. Beyond the Heliopause, the Interstellar Probe would offer the first sampling of the properties of the Local Interstellar Cloud and interstellar dust that are completely new scientific territories. Relatively modest contributions across divisions would offer historic science returns, including a flyby of one or two Kuiper Belt Objects, first insights in to the structure of the circum-solar dust disk, and the first measurements of the Extra-galactic Background Light beyond the obscuring Zodiacal cloud. In summary, an Interstellar Probe would represent humanity’s first step in to the galaxy and become the farthest space exploration ever undertaken.</p> <p>The idea of an Interstellar Probe and a Solar Probe shares a common beginning as two of the “Special Probes” that the Simpson Committee carried forward in their Interim Report to the Space Studies Board in 1960. Since then, an Interstellar Probe has scientifically been highly rated in the Solar and Space Physics Decadal Surveys, but the lack of propulsion technologies and launch vehicles have presented a stumbling block for its realization. However, this bottleneck is now being removed with the development of the Space Launch System (SLS) Block 2 with first launch projected to end of the 2020’s.</p> <p>A study funded by NASA is now progressing towards its third year of developing realistic mission architectures for an Interstellar Probe using technology ready for launch beginning 2030. An SLS Block 2, with an Atlas Centaur 3<sup>rd</sup>stage, a Star 48 4<sup>th</sup> stage  could propel a spacecraft up to about 8.5 AU/year, which would be more than twice the fastest escaping spacecraft (Voyager 1 at 3.6 AU/year). The scenario would use a direct inject to Jupiter followed by a Jupiter Gravity assist powered by the 4<sup>th</sup> stage. The mission trade space is bound by requirements to be able to operate out to 1000 AU, 600 W of power beginning of mission, and survive up to 50 years.</p> <p>Here, we discuss the outstanding science questions that could be addressed by a mission to the LISM, notional science payload and report on realistic mission architectures, design concepts and trades, enabling technologies, and programmatic challenges.</p>


2000 ◽  
Vol 528 (2) ◽  
pp. 756-766 ◽  
Author(s):  
Jeffrey L. Linsky ◽  
Seth Redfield ◽  
Brian E. Wood ◽  
Nikolai Piskunov

2021 ◽  
Author(s):  
Silvan Hunziker ◽  
Veerle Sterken ◽  
Peter Strub ◽  
Harald Krüger ◽  
Aigen Li

<p>Interstellar Probe is an ambitious mission concept, to reach interstellar space (up to 1000 AU). Its launch date is between 2030 and 2042 and its goals cover different fields of science from planetary science, heliophysics (heliosphere), to astronomy. One main goal is to significantly expand our knowledge about our heliosphere, the interstellar medium, and how both interact with each other. Among many other instruments, the space probe is planned to carry a dust mass spectrometer that will be able to capture dust particles and measure their composition. This will be especially useful for measuring the interstellar dust of the local interstellar medium that continuously streams through the solar system and has been directly detected for the first time with the Ulysses spacecraft in the 1990s. The mass distributions from such in situ dust detections in the solar system so far have shown a significant discrepancy compared to the results from astronomical observations. We performed a series of simulations of the interstellar dust trajectories and distribution inside the solar system and use them to predict the ability of the Interstellar Probe to measure interstellar dust particles and how this ability is affected by different spacecraft trajectories and dust detector setups. We also discuss how the filtering of small dust particles at the boundary regions of the heliosphere affects our predictions and indicate how in situ dust measurements can be used to constrain the filtering process. In general, most of the dust particles can be measured if the spacecraft moves towards the nose of the heliosphere. However, we also find a significant correlation between the presence of small dust particles (<0.3 microns) in the inner solar system and the phase of the solar cycle which is caused by the filtering effect of the solar magnetic field via the Lorentz force. Inside the heliosphere, the interstellar Probe may be able to detect and analyze up to 1 interstellar dust particle per day for particle sizes >0.1 micron and many more of the smaller particles, depending on the state of the solar magnetic field and the dust filtering at the boundary of the heliosphere. Outside the heliosphere, the absence of dust filtering should increase the detection rate of small particles (<0.1 microns) to more than 10 per day.</p>


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
T.D. Pollard ◽  
P. Maupin

In this paper we review some of the contributions that electron microscopy has made to the analysis of actin and myosin from nonmuscle cells. We place particular emphasis upon the limitations of the ultrastructural techniques used to study these cytoplasmic contractile proteins, because it is not widely recognized how difficult it is to preserve these elements of the cytoplasmic matrix for electron microscopy. The structure of actin filaments is well preserved for electron microscope observation by negative staining with uranyl acetate (Figure 1). In fact, to a resolution of about 3nm the three-dimensional structure of actin filaments determined by computer image processing of electron micrographs of negatively stained specimens (Moore et al., 1970) is indistinguishable from the structure revealed by X-ray diffraction of living muscle.


Author(s):  
J.L. Williams ◽  
K. Heathcote ◽  
E.J. Greer

High Voltage Electron Microscope already offers exciting experimental possibilities to Biologists and Materials Scientists because the increased specimen thickness allows direct observation of three dimensional structure and dynamic experiments on effectively bulk specimens. This microscope is designed to give maximum accessibility and space in the specimen region for the special stages which are required. At the same time it provides an ease of operation similar to a conventional instrument.


Author(s):  
G. E. Tyson ◽  
M. J. Song

Natural populations of the brine shrimp, Artemia, may possess spirochete- infected animals in low numbers. The ultrastructure of Artemia's spirochete has been described by conventional transmission electron microscopy. In infected shrimp, spirochetal cells were abundant in the blood and also occurred intra- and extracellularly in the three organs examined, i.e. the maxillary gland (segmental excretory organ), the integument, and certain muscles The efferent-tubule region of the maxillary gland possessed a distinctive lesion comprised of a group of spirochetes, together with numerous small vesicles, situated in a cave-like indentation of the base of the tubule epithelium. in some instances the basal lamina at a lesion site was clearly discontinuous. High-voltage electron microscopy has now been used to study lesions of the efferent tubule, with the aim of understanding better their three-dimensional structure.Tissue from one maxillary gland of an infected, adult, female brine shrimp was used for HVEM study.


Sign in / Sign up

Export Citation Format

Share Document