CO2 fluxes and carbon balance of an agricultural grassland in southern Finland

Author(s):  
Laura Heimsch ◽  
Annalea Lohila ◽  
Liisa Kulmala ◽  
Juha-Pekka Tuovinen ◽  
Mika Korkiakoski ◽  
...  

<p>Agriculture is globally a significant source of carbon emissions to the atmosphere. Main causes for these high emissions are conventional intensive management practices which include such as frequent ploughing, monocropping and high use of agrochemicals. These practices contribute to the loss of biodiversity and soil organic matter, as well as to the CO<sub>2</sub> emissions from land use. Recently, it has been recognised that agriculture functioning on the basis of regenerative practices is one of the most potential tools to mitigate climate change.</p><p>It is well known that topsoil layer and especially humus-rich soils can store more carbon than atmosphere and vegetation together. Therefore, increasing the amount of soil organic matter in the agroecosystems, by applying enhanced management practices such as reduced tillage, high biodiversity and cover cropping, agricultural soils would not only help to mitigate climate change but also to restore soil quality and fertility. To understand the carbon dynamics on different agricultural sites, factors affecting and comprising the carbon balance, and to verify soil carbon and ecosystem models, continuous long-term monitoring of the GHG fluxes is essential at such managed ecosystems. Here we present results from a new eddy covariance (EC) flux study site located in southern Finland.</p><p>Continuous CO<sub>2</sub> flux measurements using the EC method have been conducted at Qvidja farm on mineral (clay) soil forage grassland in Parainen, southern Finland (60.29550°N, 22.39281°E) since the spring 2018. Based on the flux and biomass data, the annual carbon balance was estimated to be negative, i.e. the site acted as an overall sink of carbon even in the dry and hot year 2018. However, the seasonal CO<sub>2</sub> fluxes were greatly dependent on weather conditions and management procedures. Results from 2019 show that the growing season accompanied with more mature and dense grass, a bit higher precipitation and lower temperatures, as well as higher cutting height was more favorable for carbon uptake in Qvidja as compared to year 2018.</p>

2014 ◽  
Vol 2 ◽  
Author(s):  
Carolina Vázquez ◽  
Laura Noe ◽  
Adriana Abril ◽  
Carolina Merlo ◽  
Carlos Romero ◽  
...  

This short communication presents a novel approach to determining the soil sustainability of productive practices in an Argentinean arid region, using the resilience degree of soil organic matter components. The study was conducted in four sites of the Arid Chaco region of the Cordoba province: one undisturbed site, two sites with livestock (with total and with selective clearing) and one site with agriculture. In each site three soil samples were taken and total soil organic matter, fulvic and humic acids, and non-humic substances were analyzed. Variations of each component (%) between each productive practice and the undisturbed site were calculated in order to establish the resilience degree. The livestock soils showed: a) moderate resilience for non-humic substances, b) low resilience for organic matter and humic acids, and c) no resilience for fulvic acids. The agricultural soils showed: a) low resilience for total organic matter and non-humic substances, and b) no resilience for fulvic and humic acids. We conclude that this approach is a powerful tool for establishing management practices according to each particular situation, allowing improved productivity in arid regions.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 51-52
Author(s):  
Jocelyn M Lavallee ◽  
Francesca Cotrufo

Abstract Soil organic matter is fundamental to healthy and productive soils and building it is an effective means by which to draw down atmospheric greenhouse gas concentrations with added co-benefits. Scientific understanding of soil organic matter dynamics is constantly evolving, and the past decade has seen major advances and paradigm shifts. Soil organic matter creation from decaying plant litter is now thought to occur under two separate pathways, yielding two functionally different types: predominantly plant-derived, unprotected particulate organic matter (POM) and predominantly microbially-derived, mineral-associated organic matter (MAOM). The idea of naturally-occurring humic substances in soils has been largely abandoned, and long-term soil organic matter persistence is now understood to be driven mainly by mineral association. We will present the research behind these paradigm shifts, and show how considering POM and MAOM separately is key to understanding the mechanisms driving carbon accrual and persistence in soil, and therefore to guiding policy and management for soil carbon sequestration. We will present drivers of POM and MAOM contents, from individual fields to continents, including their capacity for sequestration and saturation in agricultural soils of the USA, and their responses to common management practices in agroecosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

<p>Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3°C), atmospheric CO<sub>2</sub>-concentration (eCO<sub>2</sub>: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO<sub>2</sub>: +3°C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, > 250 µm), micro-aggregates (miA, 63 µm – 250 µm) and free silt & clay (sc, < 63 µm). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of ρ = 1.6 g*cm<sup>-3</sup>, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt & clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO<sub>2</sub> and eT x eCO<sub>2 </sub>plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO<sub>2 </sub>treatment. Total soil C and N did not significantly change with treatments.  eCO<sub>2</sub> decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO<sub>2</sub> fumigation treatment. This significantly differed between size classes and density fractions (p < 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.    </p>


2018 ◽  
Vol 29 (3) ◽  
pp. 485-494 ◽  
Author(s):  
Alessandro Piccolo ◽  
Riccardo Spaccini ◽  
Vincenza Cozzolino ◽  
Assunta Nuzzo ◽  
Marios Drosos ◽  
...  

2016 ◽  
Vol 62 (1) ◽  
pp. 1-9
Author(s):  
Vladimír Šimanský ◽  
Nora Polláková

Abstract Since understanding soil organic matter (SOM) content and quality is very important, in the present study we evaluated parameters of SOM including: carbon lability (LC), lability index (LI), carbon pool index (CPI) and carbon management index (CMI) in the soil as well as in the water-stable aggregates (WSA) under different soil management practices in a commercial vineyard (established on Rendzic Leptosol in the Nitra viticulture area, Slovakia). Soil samples were taken in spring during the years 2008–2015 from the following treatments: G (grass, control), T (tillage and intensive cultivation), T+FYM (tillage + farmyard manure), G+NPK3 (grass + 3rd intensity of fertilisation for vineyards), and G+NPK1 (grass + 1st intensity of fertilisation for vineyards). The highest LI values in soil were found for the G+NPK3 and T+FYM fertilised treatments and the lowest for the unfertilised intensively tilled treatments. The CPI in the soil increased as follows: T < G+NPK3 < T+FYM < G+NPK1. The highest accumulation of carbon as well as decomposable organic matter occurred in G+NPK1 compared to other fertilised treatments, while intensive tillage caused a decrease. On average, the values of LI in WSA increased in the sequence G+NPK1 < T+FYM < G+NPK3 < T. Our results showed that the greatest SOM vulnerability to degradation was observed in the WSA under T treatment, and the greatest values of CPI in WSA were detected as a result of fertiliser application in 3rd intensity for vineyards and farmyard manure application.


2003 ◽  
Author(s):  
Benny Chefetz ◽  
Baoshan Xing

Sorption of hydrophobic compounds to aliphatic components of soil organic matter (SOM) is poorly understood even though these aliphatic carbons are a major fraction of SOM. The main source of aliphatic compounds in SOM is above- and below-ground plant cuticular materials (cutin, cutan and suberin). As decomposition proceeds, these aliphatic moieties tend to accumulate in soils. Therefore, if we consider that cuticular material contributes significantly to SOM, we can hypothesize that the cuticular materials play an important role in the sorption processes of hydrophobic compounds (including pesticides) in soils, which has not yet been studied. The overall goal of this research was to illustrate the mechanism and significance of the refractory aliphatic structures of SOM in sorbing hydrophobic compounds (nonionic and weakly polar pesticides). The importance of this study is related to our ability to demonstrate the sorption relationship between key pesticides and an important fraction of SOM. The specific objectives of the project were: (1) To isolate and characterize cuticular fractions from selected plants; (2) To investigate the sorption mechanism of key hydrophobic pesticides and model compounds to cuticular plant materials; (3) To examine the sorption mechanisms at the molecular level using spectroscopic techniques; (4) To investigate the sorption of key hydrophobic pesticides to synthetic polymers; (5) To evaluate the content of cuticular materials in agricultural soils; and (6) To study the effect of incubation of plant cuticular materials in soils on their sorptive capabilities. This project demonstrates the markedly high sorption capacity of various plant cuticular fractions for hydrophobic organic compounds (HOCs) and polar organic pollutants. Both cutin (the main polymer of the cuticle) and cutan biopolymers exhibit high sorption capability even though both sorbents are highly aliphatic in nature. Sorption by plant cuticular matter occurs via hydrophobic interactions and H-bonding interactions with polar sorbates. The cutin biopolymer seems to facilitate reversible and noncompetitive sorption, probably due to its rubbery nature. On the other hand, the epicuticular waxes facilitate enhance desorption in a bi-solute system. These processes are possibly related to phase transition (melting) of the waxes that occur in the presence of high solute loading. Moreover, our data highlight the significance of polarity and accessibility of organic matter in the uptake of nonpolar and polar organic pollutants by regulating the compatibility of sorbate to sorbent. In summary, our data collected in the BARD project suggest that both cutin and cutan play important roles in the sorption of HOCs in soils; however, with decomposition the more condensed structure of the cutin and mainly the cutan biopolymer dominated sorption to the cuticle residues. Since cutin and cutan have been identified as part of SOM and humic substances, it is suggested that retention of HOCs in soils is also controlled by these aliphatic domains and not only by the aromaticrich fractions of SOM.


Sign in / Sign up

Export Citation Format

Share Document