GLORIA observations of pollution tracers C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS region

Author(s):  
Gerald Wetzel ◽  
Felix Friedl-Vallon ◽  
Norbert Glatthor ◽  
Jens-Uwe Grooß ◽  
Thomas Gulde ◽  
...  

<p>The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging Fourier transform spectrometer (iFTS) using a 2-dimensional detector array to record emission spectra in the mid-infrared region with high spatial resolution. GLORIA is operated on high altitude research aircraft, mainly in the limb observational geometry to measure vertical profiles of temperature and atmospheric trace species with high vertical resolution.</p><p>In autumn 2017, the Wave-driven ISentropic Exchange (WISE) aircraft campaign took place from Shannon (Ireland). Sixteen flights with the High Altitude and Long Range Research Aircraft (HALO) were performed between 31 August and 21 October 2017 over the eastern North Atlantic region.</p><p>GLORIA observations were analysed with regard to pollutant species like C<sub>2</sub>H<sub>6</sub>, C<sub>2</sub>H<sub>2</sub>, HCOOH, and PAN, which are produced at distinct source regions near the ground and transported to remote regions due to their atmospheric lifetime of several weeks. Enhanced volume mixing ratios of these molecules were detected along some parts of the flight track in the upper troposphere and lowermost stratosphere (UTLS).</p><p>Measured profiles of these species are compared to simulations from the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and reanalysis data from the Copernicus Atmosphere Monitoring Service (CAMS). Furthermore, emission tracers and back-trajectories from the Chemical Lagrangian Model of the Stratosphere (CLaMS) are used to analyse the source regions of these pollution events.</p>

2021 ◽  
Vol 21 (10) ◽  
pp. 8213-8232
Author(s):  
Gerald Wetzel ◽  
Felix Friedl-Vallon ◽  
Norbert Glatthor ◽  
Jens-Uwe Grooß ◽  
Thomas Gulde ◽  
...  

Abstract. Measurements of the pollution trace gases ethane (C2H6), ethyne (C2H2), formic acid (HCOOH), and peroxyacetyl nitrate (PAN) were performed in the North Atlantic upper troposphere and lowermost stratosphere (UTLS) region with the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) with high spatial resolution down to cloud top. Observations were made during flights with the German research aircraft HALO (High Altitude and LOng Range Research Aircraft) in the frame of the WISE (Wave-driven ISentropic Exchange) campaign, which was carried out in autumn 2017 from Shannon (Ireland) and Oberpfaffenhofen (Germany). Enhanced volume mixing ratios (VMRs) of up to 2.2 ppbv C2H6, 0.2 ppbv C2H2, 0.9 ppbv HCOOH, and 0.4 ppbv PAN were detected during the flight on 13 September 2017 in the upper troposphere and around the tropopause above the British Isles. Elevated quantities of PAN were measured even in the lowermost stratosphere (locally up to 14 km), likely reflecting the fact that this molecule has the longest lifetime of the four species discussed herein. Backward trajectory calculations as well as global three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) simulations with artificial tracers of air mass origin have shown that the main sources of the observed pollutant species are forest fires in North America and anthropogenic pollution in South Asia and Southeast Asia uplifted and moved within the Asian monsoon anticyclone (AMA) circulation system. After release from the AMA, these species or their precursor substances are transported by strong tropospheric winds over large distances, depending on their particular atmospheric lifetime of up to months. Observations are compared to simulations with the atmospheric models EMAC (ECHAM5/MESSy Atmospheric Chemistry) and CAMS (Copernicus Atmosphere Monitoring Service). These models are qualitatively able to reproduce the measured VMR enhancements but underestimate the absolute amount of the increase. Increasing the emissions in EMAC by a factor of 2 reduces the disagreement between simulated and measured results and illustrates the importance of the quality of emission databases used in chemical models.


2015 ◽  
Vol 15 (7) ◽  
pp. 3831-3850 ◽  
Author(s):  
L. Marelle ◽  
J.-C. Raut ◽  
J. L. Thomas ◽  
K. S. Law ◽  
B. Quennehen ◽  
...  

Abstract. During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.


2020 ◽  
Author(s):  
Felix Friedl-Vallon ◽  
Jörn Ungermann ◽  
Sören Johansson ◽  
Gerald Wetzel ◽  
Markus Geldenhuys ◽  
...  

<p>The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging Fourier transform spectrometer (iFTS) using a 2-dimensional detector array to record emission spectra in the mid-infrared region with high spatial resolution. GLORIA has been operated on the High Altitude and Long Range Research Aircraft (HALO) during the SouthTRAC campaign in September-November 2019. The campaign with base in Rio Grande (Tierra del Fuego) consisted of two observational periods, mainly in September and November 2019. Apart from many local flights, between the two phases HALO returned to Germany which allowed us to acquire long-range hemispheric cross-sections.</p><p>Two dimensional distributions of pollution species like C<sub>2</sub>H<sub>6</sub>, C<sub>2</sub>H<sub>2</sub>, HCOOH, and PAN, which are produced as primary and secondary products from biomass burning sources have been derived from the GLORIA observations. We will show that during the hemispheric cross sections as well as during some of the local flights, GLORIA observed pollution plumes with extensions of many kilometres in altitude and hundreds of kilometres horizontally with strongly enhanced concentrations of these species.</p><p>Trajectory analysis as well as comparisons to Microwave Limb Sounder (MLS) satellite observations show that the origin of plumes are mainly fires in South America and Africa, but also first signs of the Australian bush fires have been detected in the UTLS as early as November 2019.</p>


2020 ◽  
Author(s):  
Gerald Wetzel ◽  
Felix Friedl-Vallon ◽  
Norbert Glatthor ◽  
Jens-Uwe Grooß ◽  
Thomas Gulde ◽  
...  

Abstract. Measurements of the pollution trace gases ethane (C2H6), ethyne (C2H2), formic acid (HCOOH), and peroxyacetyl nitrate (PAN) were performed in the North Atlantic upper troposphere and lowermost stratosphere (UTLS) region with the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) with high spatial resolution down to cloud top. Observations were made during flights with the German research aircraft HALO (High Altitude and LOng Range Research Aircraft) in the frame of the WISE (Wave-driven ISentropic Exchange) campaign, which was carried out in autumn 2017 from Shannon (Ireland) and Oberpfaffenhofen (Germany). Enhanced volume mixing ratios (VMR) of up to 2.2 ppbv C2H6, 0.2 ppbv C2H2, 0.9 ppbv HCOOH, and 0.4 ppbv PAN were detected during the flight on 13 September 2017 in the upper troposphere and around the tropopause above the British Isles. Since PAN has the longest lifetime of this foursome, elevated quantities of this molecule could be measured even in the lowermost stratosphere (locally up to 14 km). Backward trajectory calculations as well as global three-dimensional CLaMS simulations with artificial tracers of air mass origin have shown that the main sources of the observed pollutant species are forest fires in North America and anthropogenic pollution in South and Southeast Asia uplifted and moved within the Asian monsoon anticyclone (AMA) circulation system. After release from the AMA, these species or their precursor substances are transported by strong tropospheric winds over large distances, depending on their particular atmospheric lifetime of up to months. Observations are compared to simulations with the atmospheric models EMAC (ECHAM5/MESSy Atmospheric Chemistry) and CAMS (Copernicus Atmosphere Monitoring Service). These models are qualitatively able to reproduce the measured VMR enhancements but underestimate the absolute amount of the increase. Increasing the emissions in EMAC by a factor of 2 reduces the disagreement between simulated and measured results and illustrates the importance of the quality of emission databases used in chemical models.


2017 ◽  
Vol 34 (11) ◽  
pp. 2393-2405 ◽  
Author(s):  
Annie L. Putman ◽  
Xiahong Feng ◽  
Eric S. Posmentier ◽  
Anthony M. Faiia ◽  
Leslie J. Sonder

AbstractLagrangian air parcel tracking is a powerful tool for estimating vapor source locations, particularly for isotope hydrology applications. Identified vapor source regions may be sensitive to the distribution of altitudes at which back trajectories are initiated. Ideally, those initial altitudes should reflect the altitudes where precipitation forms. This paper introduces a novel method for estimating these heights from reanalysis data and an air parcel lofting routine, which is referred to as the “Reanalysis” method. Using Barrow, Alaska (now known as Utqiaġvik), as a test site, the study compares the distribution of air parcel initiation heights and vapor source conditions from back trajectories initiated at 1) heights determined by the Reanalysis method and 2) heights acquired from 35-GHz vertically resolved cloud radar, termed the “Cloud Radar” method. Only 2 of the 70 events failed to produce condensation at any elevation. The distribution of air parcels generated by each method was compared on the basis of the median height and the median-adjusted overlap, and yielded excellent (n = 28), good (n = 20), fair (n = 6), and poor (n = 14) matches between the two methods. The excellent and good category events tended to produce condensation profiles with lower median heights, which translated to more similar vapor source characteristics. Poorly matched events tended to result from rain events where the Reanalysis method yielded much higher median heights than the Cloud Radar method.


2020 ◽  
Author(s):  
Matthias Nützel ◽  
Aurélien Podglajen ◽  
Hella Garny ◽  
Felix Ploeger

<p><span>We use multiannual simulations with the chemistry-transport model CLaMS (Chemical Lagrangian Model of the Stratosphere) to analyze water vapour transport from the Asian monsoon region to the stratosphere. Further, we make comparisons of the transport characteristics from the Asian monsoon to the stratosphere with those of other source regions (e.g. from the tropics). In addition, we characterize the transport efficiency of the monsoon region compared to other source regions and bring our results into context with previous studies, which have focused on water vapour transport from the Asian monsoon to the stratosphere. These analyses are complementing the previously published work by Ploeger et al. (2017), who have analyzed mass transport from the Asian monsoon anticyclone to the stratosphere. </span></p><p><span>The presented findings have been recently published in Atmospheric Chemistry and Physics (Nützel et al., 2019).</span></p><p> </p><p><span>References:</span></p><p><span>Ploeger, F., Konopka, P., Walker, K., and Riese, M.: Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere, Atmos. Chem. Phys., 17, 7055-7066, https://doi.org/10.5194/acp-17-7055-2017, 2017.</span></p><p><span>Nützel, M., Podglajen, A., Garny, H., and Ploeger, F.: Quantification of water vapour transport from the Asian monsoon to the stratosphere, Atmos. Chem. Phys., 19, 8947–8966, https://doi.org/10.5194/acp-19-8947-2019, 2019. </span></p><p> </p><p> </p><p> </p>


2014 ◽  
Vol 14 (21) ◽  
pp. 28333-28384
Author(s):  
L. Marelle ◽  
J.-C. Raut ◽  
J. L. Thomas ◽  
K. S. Law ◽  
B. Quennehen ◽  
...  

Abstract. During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using EMEP measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic, showing a good agreement, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne LIDAR measurements. Evaluating the regional impacts in the Arctic of this event in terms of aerosol vertical structure, we find that during the 4 day presence of these aerosols in the lower European Arctic (< 75° N), biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~1.5 km) and higher altitudes (~4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface. The European plumes sampled during POLARCAT-France were transported over the region of springtime snow cover in Northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top of atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.


2017 ◽  
Vol 17 (13) ◽  
pp. 8101-8128 ◽  
Author(s):  
Eyal Freud ◽  
Radovan Krejci ◽  
Peter Tunved ◽  
Richard Leaitch ◽  
Quynh T. Nguyen ◽  
...  

Abstract. The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station – Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to  ∼ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites – often above 150 cm−3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns – to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.


2017 ◽  
Author(s):  
Jorge Eiras-Barca ◽  
Alexandre M. Ramos ◽  
Joaquim G. Pinto ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato ◽  
...  

Abstract. The explosive cyclogenesis of extra-tropical cyclones and the occurrence of atmospheric rivers are characteristic features of baroclinic atmospheres, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific Basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. This insight can be helpful for the predictability of high impact weather associated with explosive cyclones and atmospheric rivers.


Sign in / Sign up

Export Citation Format

Share Document