The dawn of Molecular Genetics in Paleoceanography: tracing Arctic change during the Holocene with marine sedaDNA records from Greenland

Author(s):  
Sofia Ribeiro ◽  
Sara Hardardottir ◽  
Jessica Louise Ray ◽  
Stijn De Schepper ◽  
Audrey Limoges ◽  
...  

<p>As we move towards a “blue” Arctic Ocean in the summer within the next decades, predicting the full range of effects of climate change on the marine arctic environment remains a challenge. This is partly due to the paucity of long-term data on ocean-biosphere-cryosphere interactions over time and partly because, today, much of our knowledge on past ocean variability derives from microfossil and biogeochemical tracers that all have considerable limitations such as preservation biases and low taxonomic resolution or coverage.</p><p>Recent studies have revealed sedaDNA as a potential “game-changer” in our ability to reconstruct past ocean conditions, due to the preservation of DNA at low temperatures, and the possibility to capture a much larger fraction of the Arctic marine biome diversity than with classical approaches. However, while sedaDNA has been used in terrestrial, archeological, and lake studies for some years, its application to marine sediment records is still in its infancy.</p><p>Here, we will present new results from material recently collected along the two Arctic Ocean outflow shelves off Greenland (Greenland Sea/Fram Strait and Northern Baffin Bay/Nares Strait). We have used a combination of modern and ancient DNA methods applied to seawater, surface sediments, and sediment cores covering the past ca. 12 000 years with the objectives of: 1) characterizing the vertical export of sea ice-associated genetic material through the water column and into the sediments following sea ice melt and 2) exploring the potential of sedaDNA from the circum-polar sea ice dinoflagellate Polarella glacialis as a new sea ice proxy. For the first objective, we followed a comparative metabarcoding approach while the second objective included designing species-specific primers followed by gene copy number quantification by a droplet digital PCR assay. </p><p>We argue that sedaDNA will have a critical role in expanding the Paleoceanography “toolbox” and lead to the establishment of a new cross-disciplinary field.</p><p> </p>

2021 ◽  
Author(s):  
Sara Harðardóttir ◽  
Connie Lovejoy ◽  
Marit-Solveig Seidenkrantz ◽  
Sofia Ribeiro

<p>Arctic sea ice is declining at an unprecedented pace as the Arctic Ocean heads towards ice-free summers within the next few decades. Because of the role of sea ice in the Earth System such as ocean circulation and ecosystem functioning, reconstructing its past variability is of great importance providing insight into past climate patterns and future climate scenarios. Today, much of our knowledge of past sea-ice variability derives from a relatively few microfossil and biogeochemical tracers, which have limitations, such as preservation biases and low taxonomic resolution. Marine sedimentary ancient DNA (marine <em>seda</em>DNA) has the potential to capture more of the arctic marine biodiversity compared to other approaches. However, little is known about how well past communities are represented in marine <em>seda</em>DNA. The transport and fate of DNA derived from sea-ice associated organisms, from surface waters to the seafloor and its eventual incorporation into marine sediment records is poorly understood.  Here, we present results from a study applying a combination of methods to examine modern and ancient DNA to material collected along the Northeast Greenland Shelf. We characterized the vertical export of genetic material by amplicon sequencing the hyper-variable V4 region of the 18S rDNA at three water depths, in surface sediments, and in a dated sediment core.  The amplicon sequencing approach, as currently applied, includes some limitations for quantitative reconstructions of past changes such as primer competition, PCR errors, and variation of gene copy numbers across different taxa. For these reasons we quantified amplicons from a single species, the circum-polar sea ice dinoflagellate <em>Polarella glacialis</em> in the marine <em>seda</em>DNA, using digital droplet PCR. The results will increase our understanding on the taphonomy of DNA in sea ice environments, how sedimentation differs among taxonomic groups, and provide indications to potentially useful marine <em>seda</em>DNA-based proxies for climate and environmental reconstructions.</p>


Author(s):  
Mats Granskog ◽  
Ioanna Merkouriadi ◽  
Bin Cheng ◽  
Robert M. Graham ◽  
Anja Rösel

2017 ◽  
Vol 44 (20) ◽  
pp. 10,479-10,485 ◽  
Author(s):  
Ioanna Merkouriadi ◽  
Bin Cheng ◽  
Robert M. Graham ◽  
Anja Rösel ◽  
Mats A. Granskog

2007 ◽  
Vol 22 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Niels Nørgaard-Pedersen ◽  
Naja Mikkelsen ◽  
Susanne Juul Lassen ◽  
Yngve Kristoffersen ◽  
Emma Sheldon

2006 ◽  
Vol 10 ◽  
pp. 61-64
Author(s):  
Naja Mikkelsen ◽  
Niels Nørgaard-Pedersen ◽  
Yngve Kristoffersen ◽  
Susanne Juul Lassen ◽  
Emma Sheldon

The Arctic Ocean is a landlocked basin, at present covered by perennial sea ice. During the past few decades a significant thinning and shrinking of the sea ice has been observed, and modelling studies indicate that the Arctic Ocean ice cover could, by the end of this century, almost disappear from most parts of the Arctic Ocean during peak summer seasons. It remains uncertain, however, whether the environmental changes are an enhanced greenhouse-warming signal or a result of natural (long-term) variability, but palaeoceanographic studies can contribute to our understanding of the natural variability of environmental parameters, e.g. sea-ice cover and oceanographic changes on time-scales of centuries to millennia. As part of the multidisciplinary EU project Greenland Arctic Shelf Ice and Climate Experiment (GreenICE), sediment coring and seismic reflection measurements have been undertaken in a hitherto unexplored part of the Arctic Ocean, the margin of the Lomonosov Ridge in the Lincoln Sea (Fig. 1). The aim of the project was to study the structure and dynamics of the sea-ice cover and attempt to relate these to longer-term records of climate variability retrieved from sediment cores. The main field work was carried out in May 2004 from an ice camp established by a Twin Otter aircraft on drifting sea ice at 85°N, 65°W, c. 170 km north of Alert, Arctic Canada. The camp was deployed over the shallowest part of the Lomonosov Ridge off the northern Greenland/Canada continental margin (Fig. 1). The sea-ice drift would normally be between east and south, but persistent easterly winds resulted in a fast drift trajectory towards the WSW, such that the camp drifted a distance of approximately 62 km during the two weeks camp period. At present the study area is heavily ice covered, and forecast models of future shrinking Arctic sea-ice cover suggest that this area is one of the least sensitive to warming in the Arctic. The results obtained from the GreenICE project challenge this view.


2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


AMBIO ◽  
2021 ◽  
Author(s):  
Henry P. Huntington ◽  
Andrey Zagorsky ◽  
Bjørn P. Kaltenborn ◽  
Hyoung Chul Shin ◽  
Jackie Dawson ◽  
...  

AbstractThe Arctic Ocean is undergoing rapid change: sea ice is being lost, waters are warming, coastlines are eroding, species are moving into new areas, and more. This paper explores the many ways that a changing Arctic Ocean affects societies in the Arctic and around the world. In the Arctic, Indigenous Peoples are again seeing their food security threatened and cultural continuity in danger of disruption. Resource development is increasing as is interest in tourism and possibilities for trans-Arctic maritime trade, creating new opportunities and also new stresses. Beyond the Arctic, changes in sea ice affect mid-latitude weather, and Arctic economic opportunities may re-shape commodities and transportation markets. Rising interest in the Arctic is also raising geopolitical tensions about the region. What happens next depends in large part on the choices made within and beyond the Arctic concerning global climate change and industrial policies and Arctic ecosystems and cultures.


Sign in / Sign up

Export Citation Format

Share Document