High-resolution model Verification Evaluation (HiVE). Part 2: Using object-based methods for the evaluation of algal blooms

Author(s):  
Marion Mittermaier ◽  
Rachel North ◽  
Christine Pequignet ◽  
Jan Maksymczuk

<div> <p>HiVE is a CMEMS funded collaboration between the atmospheric Numerical Weather Prediction (NWP) verification and the ocean community within the Met Office, aimed at demonstrating the use of spatial verification methods originally developed for the evaluation of high-resolution NWP forecasts, to CMEMS ocean model forecast products. Spatial verification methods provide more scale appropriate ways to better assess forecast characteristics and accuracy of km-scale forecasts, where the detail looks realistic but may not be in the right place at the right time. As a result, it can be the case that coarser resolution forecasts verify better (e.g. lower root-mean-square-error) than the higher resolution forecast. In this instance the smoothness of the coarser resolution forecast is rewarded, though the higher-resolution forecast may be better. The project utilised open source code library known as Model Evaluation Tools (MET) developed at the US National Center for Atmospheric Research (NCAR).</p> </div><div> <p> </p> </div><div> <p>This project saw, for the first time, the application of spatial verification methods to sub-10 km resolution ocean model forecasts. The project consisted of two parts. Part 1 is described in the companion poster to this one. Part 2 describes the skill of CMEMS products for forecasting events or features of interest such as algal blooms.  </p> </div><div> <p> </p> </div><div> <p>The Method for Object-based Diagnostic Evaluation (MODE) and the time dimension version MODE Time Domain (MTD) were applied to daily mean chlorophyll forecasts for the European North West Shelf from the FOAM-ERSEM model on the AMM7 grid. The forecasts are produced from a “cold start”, i.e. no data assimilation of biological variables. Here the entire 2019 algal bloom season was analysed to understand: intensity and spatial (area) biases; location and timing errors. Forecasts were compared to the CMEMS daily cloud free (L4) multi-sensor chlorophyll-<em>a</em> product. </p> </div><div> <p> </p> </div><div> <p>It has been found that there are large differences between forecast and observed concentrations of chlorophyll. This has meant that a quantile mapping approach for removing the bias was necessary before analysing the spatial properties of the forecast. Despite this the model still produces areas of chlorophyll which are too large compared to the observed. The model often produces areas of enhanced chlorophyll in approximately the right locations but the forecast and observed areas are rarely collocated and/or overlapping. Finally, the temporal analysis shows that the model struggled to get the onset of the season (being close to a month too late), but once the model picked up the signal there was better correspondence between the observed and forecast chlorophyll peaks for the remainder of the season. There was very little variation in forecast performance with lead time, suggesting that chlorophyll is a very slowly varying quantity.  </p> </div><div> <p> </p> </div><div> <p>Comparing an analysis which included the assimilation of observed chlorophyll shows that it is much closer to the observed L4 product than the non-biological assimilative analysis. It must be concluded that if the forecast were started from a DA analysis that included chlorophyll, it would lead to forecasts with less bias, and possibly a better detection of the onset of the bloom.  </p> </div><div> <p> </p> </div>

2020 ◽  
Author(s):  
Jan Maksymczuk ◽  
Ric Crocker ◽  
Marion Mittermaier ◽  
Christine Pequignet

<div> <p>HiVE is a CMEMS funded collaboration between the atmospheric Numerical Weather Prediction (NWP) verification and the ocean community within the Met Office, aimed at demonstrating the use of spatial verification methods originally developed for the evaluation of high-resolution NWP forecasts, with CMEMS ocean model forecast products. Spatial verification methods provide more scale appropriate ways to better assess forecast characteristics and accuracy of km-scale forecasts, where the detail looks realistic but may not be in the right place at the right time. As a result, it can be the case that coarser resolution forecasts verify better (e.g. lower root-mean-square-error) than the higher resolution forecast. In this instance the smoothness of the coarser resolution forecast is rewarded, though the higher-resolution forecast may be better. The project utilised open source code library known as Model Evaluation Toolkit (MET) developed at the US National Center for Atmospheric Research. </p> </div><div> <p> </p> </div><div> <p>This project saw, for the first time, the application of spatial verification methods to sub-10 km resolution ocean model forecasts. The project consisted of two parts. Part 1 describes an assessment of the forecast skill for SST of CMEMS model configurations at observing locations using an approach called HiRA (High Resolution Assessment). Part 2 is described in the companion poster to this one.  </p> </div><div> <p> </p> </div><div> <p>HiRA is a single-observation-forecast-neighbourhood-type method which makes use of commonly used ensemble verification metrics such as the Brier Score (BS) and the Continuous Ranked Probability Score (CRPS). In this instance all model grid points within a predefined neighbourhood of the observing location are considered equi-probable outcomes (or pseudo-ensemble members) at the observing location. The technique allows for an inter-comparison of models with different grid resolutions as well as between deterministic and probabilistic forecasts in an equitable and consistent way. In this work it has been applied to the CMEMS products delivered from the AMM7 (~7km) and AMM15 (~1.5km) model configurations for the European North West Shelf that are provided by the Met Office. </p> </div><div> <p> </p> </div><div> <p>It has been found that when neighbourhoods of equivalent extent are compared for both configurations it is possible to show improved forecast skill for SST for the higher resolution AMM15 both on- and off-shelf, which has been difficult to demonstrate previously using traditional metrics. Forecast skill generally degrades with increasing lead time for both configurations, with the off-shelf results for the higher resolution model showing increasing benefits over the coarser configuration. </p> </div>


2009 ◽  
Vol 24 (6) ◽  
pp. 1498-1510 ◽  
Author(s):  
Elizabeth E. Ebert

Abstract High-resolution forecasts may be quite useful even when they do not match the observations exactly. Neighborhood verification is a strategy for evaluating the “closeness” of the forecast to the observations within space–time neighborhoods rather than at the grid scale. Various properties of the forecast within a neighborhood can be assessed for similarity to the observations, including the mean value, fractional coverage, occurrence of a forecast event sufficiently near an observed event, and so on. By varying the sizes of the neighborhoods, it is possible to determine the scales for which the forecast has sufficient skill for a particular application. Several neighborhood verification methods have been proposed in the literature in the last decade. This paper examines four such methods in detail for idealized and real high-resolution precipitation forecasts, highlighting what can be learned from each of the methods. When applied to idealized and real precipitation forecasts from the Spatial Verification Methods Intercomparison Project, all four methods showed improved forecast performance for neighborhood sizes larger than grid scale, with the optimal scale for each method varying as a function of rainfall intensity.


2021 ◽  
Vol 4 ◽  
pp. 30-49
Author(s):  
A.Yu. Bundel ◽  
◽  
A.V. Muraviev ◽  
E.D. Olkhovaya ◽  
◽  
...  

State-of-the-art high-resolution NWP models simulate mesoscale systems with a high degree of detail, with large amplitudes and high gradients of fields of weather variables. Higher resolution leads to the spatial and temporal error growth and to a well-known double penalty problem. To solve this problem, the spatial verification methods have been developed over the last two decades, which ignore moderate errors (especially in the position), but can still evaluate the useful skill of a high-resolution model. The paper refers to the updated classification of spatial verification methods, briefly describes the main methods, and gives an overview of the international projects for intercomparison of the methods. Special attention is given to the application of the spatial approach to ensemble forecasting. Popular software packages are considered. The Russian translation is proposed for the relevant English terms. Keywords: high-resolution models, verification, double penalty, spatial methods, ensemble forecasting, object-based methods


2017 ◽  
Vol 32 (2) ◽  
pp. 733-741 ◽  
Author(s):  
Craig S. Schwartz

Abstract As high-resolution numerical weather prediction models are now commonplace, “neighborhood” verification metrics are regularly employed to evaluate forecast quality. These neighborhood approaches relax the requirement that perfect forecasts must match observations at the grid scale, contrasting traditional point-by-point verification methods. One recently proposed metric, the neighborhood equitable threat score, is calculated from 2 × 2 contingency tables that are populated within a neighborhood framework. However, the literature suggests three subtly different methods of populating neighborhood-based contingency tables. Thus, this work compares and contrasts these three variants and shows they yield statistically significantly different conclusions regarding forecast performance, illustrating that neighborhood-based contingency tables should be constructed carefully and transparently. Furthermore, this paper shows how two of the methods use inconsistent event definitions and suggests a “neighborhood maximum” approach be used to fill neighborhood-based contingency tables.


2011 ◽  
Vol 26 (6) ◽  
pp. 785-807 ◽  
Author(s):  
Jonathan L. Case ◽  
Sujay V. Kumar ◽  
Jayanthi Srikishen ◽  
Gary J. Jedlovec

Abstract It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.


2016 ◽  
Vol 31 (3) ◽  
pp. 713-735 ◽  
Author(s):  
Patrick S. Skinner ◽  
Louis J. Wicker ◽  
Dustan M. Wheatley ◽  
Kent H. Knopfmeier

Abstract Two spatial verification methods are applied to ensemble forecasts of low-level rotation in supercells: a four-dimensional, object-based matching algorithm and the displacement and amplitude score (DAS) based on optical flow. Ensemble forecasts of low-level rotation produced using the National Severe Storms Laboratory (NSSL) Experimental Warn-on-Forecast System are verified against WSR-88D single-Doppler azimuthal wind shear values interpolated to the model grid. Verification techniques are demonstrated using four 60-min forecasts issued at 15-min intervals in the hour preceding development of the 20 May 2013 Moore, Oklahoma, tornado and compared to results from two additional forecasts of tornadic supercells occurring during the springs of 2013 and 2014. The object-based verification technique and displacement component of DAS are found to reproduce subjectively determined forecast characteristics in successive forecasts for the 20 May 2013 event, as well as to discriminate in subjective forecast quality between different events. Ensemble-mean, object-based measures quantify spatial and temporal displacement, as well as storm motion biases in predicted low-level rotation in a manner consistent with subjective interpretation. Neither method produces useful measures of the intensity of low-level rotation, owing to deficiencies in the verification dataset and forecast resolution.


2021 ◽  
Vol 149 (4) ◽  
pp. 1153-1172
Author(s):  
David S. Henderson ◽  
Jason A. Otkin ◽  
John R. Mecikalski

AbstractThe evolution of model-based cloud-top brightness temperatures (BT) associated with convective initiation (CI) is assessed for three bulk cloud microphysics schemes in the Weather Research and Forecasting Model. Using a composite-based analysis, cloud objects derived from high-resolution (500 m) model simulations are compared to 5-min GOES-16 imagery for a case study day located near the Alabama–Mississippi border. Observed and simulated cloud characteristics for clouds reaching CI are examined by utilizing infrared BTs commonly used in satellite-based CI nowcasting methods. The results demonstrate the ability of object-based verification methods with satellite observations to evaluate the evolution of model cloud characteristics, and the BT comparison provides insight into a known issue of model simulations producing too many convective cells reaching CI. The timing of CI from the different microphysical schemes is dependent on the production of ice in the upper levels of the cloud, which typically occurs near the time of maximum cloud growth. In particular, large differences in precipitation formation drive differences in the amount of cloud water able to reach upper layers of the cloud, which impacts cloud-top glaciation. Larger cloud mixing ratios are found in clouds with sustained growth leading to more cloud water lofted to the upper levels of the cloud and the formation of ice. Clouds unable to sustain growth lack the necessary cloud water needed to form ice and grow into cumulonimbus. Clouds with slower growth rates display similar BT trends as clouds exhibiting growth, which suggests that forecasting CI using geostationary satellites might require additional information beyond those derived at cloud top.


2010 ◽  
Vol 138 (9) ◽  
pp. 3418-3433 ◽  
Author(s):  
Tanja Weusthoff ◽  
Felix Ament ◽  
Marco Arpagaus ◽  
Mathias W. Rotach

Abstract High-resolution numerical weather prediction (NWP) models produce more detailed precipitation structures but the real benefit is probably the more realistic statistics gained with the higher resolution and not the information on the specific grid point. By evaluating three model pairs, each consisting of a high-resolution NWP system resolving convection explicitly and its low-resolution-driving model with parameterized convection, on different spatial scales and for different thresholds, this paper addresses the question of whether high-resolution models really perform better than their driving lower-resolution counterparts. The model pairs are evaluated by means of two fuzzy verification methods—upscaling (UP) and fractions skill score (FSS)—for the 6 months of the D-PHASE Operations Period and in a highly complex terrain. Observations are provided by the Swiss radar composite and the evaluation is restricted to the area covered by the Swiss radar stations. The high-resolution models outperform or equal the performance of their respective lower-resolution driving models. The differences between the models are significant and robust against small changes in the verification settings. An evaluation based on individual months shows that high-resolution models give better results, particularly with regard to convective, more localized precipitation events.


2014 ◽  
Vol 29 (6) ◽  
pp. 1451-1472 ◽  
Author(s):  
Jamie K. Wolff ◽  
Michelle Harrold ◽  
Tressa Fowler ◽  
John Halley Gotway ◽  
Louisa Nance ◽  
...  

Abstract While traditional verification methods are commonly used to assess numerical model quantitative precipitation forecasts (QPFs) using a grid-to-grid approach, they generally offer little diagnostic information or reasoning behind the computed statistic. On the other hand, advanced spatial verification techniques, such as neighborhood and object-based methods, can provide more meaningful insight into differences between forecast and observed features in terms of skill with spatial scale, coverage area, displacement, orientation, and intensity. To demonstrate the utility of applying advanced verification techniques to mid- and coarse-resolution models, the Developmental Testbed Center (DTC) applied several traditional metrics and spatial verification techniques to QPFs provided by the Global Forecast System (GFS) and operational North American Mesoscale Model (NAM). Along with frequency bias and Gilbert skill score (GSS) adjusted for bias, both the fractions skill score (FSS) and Method for Object-Based Diagnostic Evaluation (MODE) were utilized for this study with careful consideration given to how these methods were applied and how the results were interpreted. By illustrating the types of forecast attributes appropriate to assess with the spatial verification techniques, this paper provides examples of how to obtain advanced diagnostic information to help identify what aspects of the forecast are or are not performing well.


2020 ◽  
Author(s):  
Rianne Giesen ◽  
Ana Trindade ◽  
Marcos Portabella ◽  
Ad Stoffelen

<p>The ocean surface wind plays an essential role in the exchange of heat, gases and momentum at the atmosphere-ocean interface. It is therefore crucial to accurately represent this wind forcing in physical ocean model simulations. Scatterometers provide high-resolution ocean surface wind observations, but have limited spatial and temporal coverage. On the other hand, numerical weather prediction (NWP) model wind fields have better coverage in time and space, but do not resolve the small-scale variability in the air-sea fluxes. In addition, Belmonte Rivas and Stoffelen (2019) documented substantial systematic error in global NWP fields on both small and large scales, using scatterometer observations as a reference.</p><p>Trindade et al. (2019) combined the strong points of scatterometer observations and atmospheric model wind fields into ERA*, a new ocean wind forcing product. ERA* uses temporally-averaged differences between geolocated scatterometer wind data and European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis fields to correct for persistent local NWP wind vector biases. Verified against independent observations, ERA* reduced the variance of differences by 20% with respect to the uncorrected NWP fields. As ERA* has a high potential for improving ocean model forcing in the CMEMS Model Forecasting Centre (MFC) products, it is a candidate for a future CMEMS Level 4 (L4) wind product. We present the ongoing work to further improve the ERA* product and invite potential users to discuss their L4 product requirements.</p><p>References:</p><p>Belmonte Rivas, M. and A. Stoffelen (2019): <em>Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT</em>, Ocean Sci., 15, 831–852, doi: 10.5194/os-15-831-2019.</p><p>Trindade, A., M. Portabella, A. Stoffelen, W. Lin and A. Verhoef (2019), <em>ERAstar: A High-Resolution Ocean Forcing Product</em>, IEEE Trans. Geosci. Remote Sens., 1-11, doi: 10.1109/TGRS.2019.2946019.</p>


Sign in / Sign up

Export Citation Format

Share Document