Direct observations of a dynamic earthquake rupture in the lower crust

Author(s):  
Arianne Petley-Ragan ◽  
Yehuda Ben-Zion ◽  
Håkon Austrheim ◽  
Benoit Ildefonse ◽  
Francois Renard

<p>A significant number of studies in recent years have demonstrated that earthquakes in the lower crust are more abundant than previously thought. Specifically in continental collision zones, earthquakes are suggested to play a crucial role in permitting fluid infiltration and driving metamorphic transformation processes in crustal portions that are typically considered dry and metastable. However, the mechanisms that trigger brittle failure in the lower crust remain debated and the sequence of events that ultimately lead to seismic slip is unclear. To further understand this process we performed field and microstructural observations on an amphibolite facies fault (0.9-1 GPa) in granulite facies anorthosite from the Bergen Arcs, Western Norway. The fault preserves an exceptional record of brittle deformation and frictional melting that allows us to constrain the temporal sequence of deformation events. Most notably, the fault is flanked on one side by a damage zone where wall rock minerals are fragmented with little to no shear strain (pulverization). The fault core consists of a zoned pseudotachylyte bound on both sides by fine-grained cataclasites. Spatial relationships between these structures reveal that asymmetric pulverization of the wall rock and comminution preceded the seismic slip required to produce melting. These observations are consistent with the propagation of a dynamic shear rupture. Our study implies that high differential stress levels may exist within the dry lower crust of orogens, causing brittle faulting and earthquakes in a portion of the crust that has long been assumed to be characterized by ductile deformation.</p>

2019 ◽  
Vol 5 (7) ◽  
pp. eaaw0913 ◽  
Author(s):  
Arianne Petley-Ragan ◽  
Yehuda Ben-Zion ◽  
Håkon Austrheim ◽  
Benoit Ildefonse ◽  
François Renard ◽  
...  

Earthquakes in the continental crust commonly occur in the upper 15 to 20 km. Recent studies demonstrate that earthquakes also occur in the lower crust of collision zones and play a key role in metamorphic processes that modify its physical properties. However, details of the failure process and sequence of events that lead to seismic slip in the lower crust remain uncertain. Here, we present observations of a fault zone from the Bergen Arcs, western Norway, which constrain the deformation processes of lower crustal earthquakes. We show that seismic slip and associated melting are preceded by fracturing, asymmetric fragmentation, and comminution of the wall rock caused by a dynamically propagating rupture. The succession of deformation processes reported here emphasize brittle failure mechanisms in a portion of the crust that until recently was assumed to be characterized by ductile deformation.


Author(s):  
Luca Menegon ◽  
Lucy Campbell ◽  
Neil Mancktelow ◽  
Alfredo Camacho ◽  
Sebastian Wex ◽  
...  

This paper discusses the results of field-based geological investigations of exhumed rocks exposed in the Musgrave Ranges (Central Australia) and in Nusfjord (Lofoten, Norway) that preserve evidence for lower continental crustal earthquakes with focal depths of approximately 25–40 km. These studies have established that deformation of the dry lower continental crust is characterized by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic slip associated with the formation of pseudotachylytes (a solidified melt produced during seismic slip along a fault in silicate rocks). Seismic slip triggers rheological weakening and a transition to viscous creep, which may be already active during the immediate post-seismic deformation along faults initially characterized by frictional melting and wall-rock damage. The cyclical interplay between seismic slip and viscous creep implies transient oscillations in stress and strain rate, which are preserved in the shear zone microstructure. In both localities, the spatial distribution of pseudotachylytes is consistent with a local (deep) source for the transient high stresses required to generate earthquakes in the lower crust. This deep source is the result of localized stress amplification in dry and strong materials generated at the contacts with ductile shear zones, producing multiple generations of pseudotachylyte over geological time. This implies that both the short- and the long-term rheological evolution of the dry lower crust typical of continental interiors is controlled by earthquake cycle deformation. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record’.


Geology ◽  
2020 ◽  
Author(s):  
Kristina G. Dunkel ◽  
Xin Zhong ◽  
Paal Ferdinand Arnestad ◽  
Lars Vesterager Valen ◽  
Bjørn Jamtveit

Seismic activity below the standard seismogenic zone is difficult to investigate because the geological records of such earthquakes, pseudotachylytes, are typically reacted and/or deformed. Here, we describe unusually pristine pseudotachylytes in lower-crustal granulites from the Lofoten Archipelago, northern Norway. The pseudotachylytes have essentially the same mineralogical composition as their host (mainly plagioclase, alkali feldspar, orthopyroxene) and contain microstructures indicative of rapid cooling, i.e., feldspar microlites and spherulites and “cauliflower” garnets. Mylonites are absent, both in the wall rocks and among the pseudotachylyte clasts. The absence of features recording precursory ductile deformation rules out several commonly invoked mechanisms for triggering earthquakes in the lower crust, including thermal runaway, plastic instabilities, and downward propagation of seismic slip from the brittle to the ductile part of a fault. The anhydrous mineralogy of host and pseudotachylytes excludes dehydration-induced embrittlement. In the absence of such weakening mechanisms, stress levels in the lower crust must have been transiently high.


Author(s):  
Fan Guochuan ◽  
Sun Zhongshi

Under influence of ductile shear deformation, granulite facies mineral paragenesis underwent metamorphism and changes in chemical composition. The present paper discusses some changes in chemical composition of garnet in hypers thene_absent felsic gnesiss and of hypersthene in rock in early and late granulite facies undergone increasing ductile shear deformation .In garnet fetsic geniss, band structures were formed because of partial melting and resulted in zoning from massive⟶transitional⟶melanocrate zones in increasing deformed sequence. The electron-probe analyses for garnet in these zones are listed in table 1 . The Table shows that Mno, Cao contents in garnet decrease swiftly from slightly to intensely deformed zones.In slightly and moderately deformed zones, Mgo contents keep unchanged and Feo is slightly lower. In intensely deformed zone, Mgo contents increase, indicating a higher temperature. This is in accord with the general rule that Mgo contents in garnet increase with rising temperature.


2014 ◽  
Vol 55 (7) ◽  
pp. 1243-1286 ◽  
Author(s):  
A. T. Mansur ◽  
S. Manya ◽  
S. Timpa ◽  
R. L. Rudnick

1998 ◽  
Vol 62 (2) ◽  
pp. 197-212 ◽  
Author(s):  
Anju Tiwary ◽  
Mihir Deb ◽  
Nigel J. Cook

AbstractPyrite is an ubiquitous constituent of the Proterozoic massive sulphide deposit at Deri, in the South Delhi Fold Belt of southern Rajasthan. Preserved pyrite microfabrics in the Zn-Pb-Cu sulphide ores of Deri reveal a polyphase growth history of the iron sulphide and enable the tectono-thermal evolution of the deposit to be reconstructed.Primary sedimentary features in Deri pyrites are preserved as compositional banding. Regional metamorphism from mid-greenschist to low amphibolite facies is recorded by various microtextures of pyrite. Trails of fine grained pyrite inclusions within hornblende porphyroblasts define S1-schistosity. Pyrite boudins aligned parallel to S1 mark the brittle–ductile transformation of pyrite during the earliest deformation in the region. Isoclinal to tight folds (F1 and F2) in pyrite layers relate to a ductile deformation stage during progressive regional metamorphism. Peak metamorphic conditions around 550°C, an estimation supported by garnet–biotite thermometry, resulted in annealing of pyrite grains, while porphyroblastic growth of pyrite (up to 900 µm) took place along the retrogressive path. Brittle deformation of pyrite and growth of irregular pyritic mass around such fractured porphyroblasts characterize the waning phase of regional metamorphism. A subsequent phase of stress-free, thermal metamorphism is recorded in the decussate and rosette textures of arsenopyrite prisms replacing irregular pyritic mass. Annealing of such patchy pyrite provides information regarding the temperature conditions during this episode of thermal metamorphism which is consistent with the hornblendehornfels facies metamorphism interpreted from magnetite–ilmenite geothermometry (550°C) and sphalerite geobarometry (3.5 kbar). A mild cataclastic deformation during the penultimate phase produced microfaults in twinned arsenopyrite prisms.


2016 ◽  
Vol 34 (1) ◽  
pp. 45-61 ◽  
Author(s):  
C. Zhang ◽  
J. Yu ◽  
S. Y. O'Reilly ◽  
W. L. Griffin ◽  
J. Qian ◽  
...  

1991 ◽  
Vol 128 (4) ◽  
pp. 307-318 ◽  
Author(s):  
C. W. Passchier ◽  
R. F. Bekendam ◽  
J. D. Hoek ◽  
P. G. H. M. Dirks ◽  
H. de Boorder

AbstractThe presence of polyphase shear zones transected by several suites of dolerite dykes in Archaean basement of the Vestfold Hills, East Antarctica, allows a detailed reconstruction of the local structural evolution. Archaean and early Proterozoic deformation at granulite facies conditions was followed by two phases of dolerite intrusion and mylonite generation in strike-slip zones at amphibolite facies conditions. A subsequent middle Proterozoic phase of brittle normal faulting led to the development of pseudotachylite, predating intrusion of the major swarm of dolerite dykes around 1250 Ma. During the later stages and following this event, pseudotachylite veins were reactivated as ductile, mylonitic thrusts under prograde conditions, culminating in amphibolite facies metamorphism around 1000–1100 Ma. This is possibly part of a large-scale tectonic event during which the Vestfold block was overthrust from the south. In a final phase of strike-slip deformation, several pulses of pseudotachylite-generating brittle faulting alternated with ductile reactivation of pseudotachylite.


1995 ◽  
Vol 32 (9) ◽  
pp. 1292-1302
Author(s):  
Terence M. Gordon ◽  
Donald C. Lawton

The Daly Bay Complex is one of several metamorphic complexes making up the Aqxarneq gneisses north of Chesterfield Inlet in central District of Keewatin. Granulite-facies metamorphism (0.55 GPa, 750 °C) and ductile deformation have affected all of the rocks in the complex. A 1–15 km wide, inward-dipping, ductile shear zone forms the outer part of the complex and contains strongly deformed equivalents of rocks in the core. Mesoscopic structures and metamorphic mineralogy suggest the Daly Bay Complex was emplaced into the surrounding lower grade rocks by northward-directed thrusting. A three-dimensional gravity model, constrained by structural observations and 1091 surface density measurements, shows that the relatively dense rocks of the complex form a spoon-shaped structure with a long axis trending northwest–southeast. It is approximately 50 km by 120 km in lateral extent and reaches a maximum depth of about 9 km. The thin-skinned geometry of the Daly Bay Complex supports the notion that the crust in central Keewatin between the Daly Bay Complex and Baker Lake comprises a series of undulating imbricated gneiss sheets of middle and lower crustal material, which were juxtaposed by a major tectonic event sometime between 2.5 and 1.9 Ga. The interpreted basal décollement is comparable to seismic features in many orogens, and a predictable consequence of increased ductility with depth in the crust.


Sign in / Sign up

Export Citation Format

Share Document