Proterozoic geological evolution of the northern Vestfold Hills, Antarctica

1991 ◽  
Vol 128 (4) ◽  
pp. 307-318 ◽  
Author(s):  
C. W. Passchier ◽  
R. F. Bekendam ◽  
J. D. Hoek ◽  
P. G. H. M. Dirks ◽  
H. de Boorder

AbstractThe presence of polyphase shear zones transected by several suites of dolerite dykes in Archaean basement of the Vestfold Hills, East Antarctica, allows a detailed reconstruction of the local structural evolution. Archaean and early Proterozoic deformation at granulite facies conditions was followed by two phases of dolerite intrusion and mylonite generation in strike-slip zones at amphibolite facies conditions. A subsequent middle Proterozoic phase of brittle normal faulting led to the development of pseudotachylite, predating intrusion of the major swarm of dolerite dykes around 1250 Ma. During the later stages and following this event, pseudotachylite veins were reactivated as ductile, mylonitic thrusts under prograde conditions, culminating in amphibolite facies metamorphism around 1000–1100 Ma. This is possibly part of a large-scale tectonic event during which the Vestfold block was overthrust from the south. In a final phase of strike-slip deformation, several pulses of pseudotachylite-generating brittle faulting alternated with ductile reactivation of pseudotachylite.

1979 ◽  
Vol 89 ◽  
pp. 63-75
Author(s):  
J.A Korstgård

The structural evolution of the Nagssugtoqidian mobile belt is characterised by reworking of pre-existing Archaean rocks. At the southern Nagssugtoqidian boundary swarms of basic dykes, the Kangamiut dykes, intruded after the earliest Nagssugtoqidian movements. These dykes aet as time markers separating tectono-metamorphic events and record degree and extent of post-dyke metamorphism and deformation. The structural and metamorphic evolution at the southern Nagssugtoqidian boundary ean be summarised as follows. The rocks now exposed were stabilised in granulite and amphibolite facies in Archaean times. Uplift brought the rocks under low amphibolite facies conditions. Subsequent deformation (Nag. 1) caused the retrogression to low amphibolite facies and transformed the rocks into strongly schistose rocks along duetile, transcurrent, E-W trending shear zones. The Nag. 1 deformation was followed by intrusion of the mainly NE trending Kangamiut dykes. Later Nagssugtoqidian deformation (Nag. 2) affected country rocks with Nag. 1 fabrics as well as dykes and probably also Archaean gneisses unaffected by Nag. 1 deformation. In areas with intense Nag. 2 movements the deformation was characterised by duetile overthrusting towards the SSE along a linear zone striking ENE. New Nag. 2 fabrics were imposed on the country gneisses and dykes were transformed into strongly deformed amphibolites. The duetile overthrusting brought granulite facies rocks into juxtaposition with amphibolite facies rocks so that across the areas affected by Nag. 2 deformation a prograde metamorphic sequence with facies boundaries parallel to the overthrusting zone was established.


2014 ◽  
Vol 86 (3) ◽  
pp. 1101-1113 ◽  
Author(s):  
FABRÍCIO A. CAXITO ◽  
ALEXANDRE UHLEIN ◽  
LUIZ F.G. MORALES ◽  
MARCOS EGYDIO-SILVA ◽  
JULIO C.D. SANGLARD ◽  
...  

The Rio Preto fold belt borders the northwestern São Francisco craton and shows an exquisite kilometric doubly-vergent asymmetric fan structure, of polyphasic structural evolution attributed exclusively to the Brasiliano Orogeny (∼600-540 Ma). The fold belt can be subdivided into three structural compartments: The Northern and Southern compartments showing a general NE-SW trend, separated by the Central Compartment which shows a roughly E-W trend. The change of dip of S2, a tight crenulation foliation which is the main structure of the fold belt, between the three compartments, characterizes the fan structure. The Central Compartment is characterized by sub-vertical mylonitic quartzites, which materialize a system of low-T strike slip shear zones (Malhadinha – Rio Preto Shear Zone) crosscutting the central portion of the fold belt. In comparison to published analog models, we consider that the unique structure of the Rio Preto fold belt was generated by the oblique, dextral-sense interaction between the Cristalândia do Piauí block to the north and the São Francisco craton to the south.


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 437-467 ◽  
Author(s):  
Emmanuelle Ricchi ◽  
Christian A. Bergemann ◽  
Edwin Gnos ◽  
Alfons Berger ◽  
Daniela Rubatto ◽  
...  

Abstract. Thorium–lead (Th-Pb) crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 21.7 ± 0.4 to 10.0 ± 0.2 Ma. Three major periods of monazite growth are recorded between ∼ 22–20 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 14–10 Ma (major peak around 12 Ma), respectively, interpreted to be related to prevailing N–S shortening, in association with E–W extension, beginning strike-slip movements and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission track data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation. Highlights. In situ dating of hydrothermal monazite-(Ce). New constraints on the exhumation of the Tauern metamorphic dome. Distinct tectonic pulses recorded from east to west.


2019 ◽  
Author(s):  
Emmanuelle Ricchi ◽  
Christian A. Bergemann ◽  
Edwin Gnos ◽  
Alfons Berger ◽  
Daniela Rubatto ◽  
...  

Abstract. Thorium-Pb crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 22.3 ± 0.6 Ma to 7.7 ± 0.9 Ma. Three major periods of monazite growth are recorded between ~ 22–19 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 13–8 Ma (major peaks at 12, 10 and 8 Ma), respectively interpreted to be related to prevailing N-S shortening, in association with E-W extension, beginning strike-slip movements, and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission tracks data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation.


2000 ◽  
Vol 137 (3) ◽  
pp. 235-255 ◽  
Author(s):  
M. KRABBENDAM ◽  
A. WAIN ◽  
T. B. ANDERSEN

The Western Gneiss Region of Norway is a continental terrane that experienced Caledonian high-pressure and ultrahigh-pressure metamorphism. Most rocks in this terrane show either peak-Caledonian eclogite-facies assemblages or are highly strained and equilibrated under late-Caledonian amphibolite-facies conditions. However, three kilometre-size rock bodies (Flatraket, Ulvesund and Kråkenes) in Outer Nordfjord preserve Pre-Caledonian igneous and granulite-facies assemblages and structures. Where these assemblages are preserved, the rocks are consistently unaffected by Caledonian deformation. The three bodies experienced high-pressure conditions (20–23 kbar) but show only very localized (about 5%) eclogitization in felsic and mafic rocks, commonly related to shear zones. The preservation of Pre-Caledonian felsic and mafic igneous and granulite-facies assemblages in these bodies, therefore, indicates widespread (∼ 95%) metastability at pressures higher than other metastable domains in Norway. Late-Caledonian amphibolite-facies retrogression was limited. The degree of reaction is related to the protolith composition and the interaction of fluid and deformation during the orogenic cycle, whereby metastability is associated with a lack of deformation and lack of fluids, either as a catalyst or as a component in hydration reactions. The three bodies appear to have been far less reactive than the external gneisses in this region, even though they followed a similar pressure–temperature evolution. The extent of metastable behaviour has implications for the protolith of the Western Gneiss Region, for the density evolution of high-pressure terranes and hence for the geodynamic evolution of mountain belts.


1962 ◽  
Vol 31 ◽  
pp. 1-46
Author(s):  
A Berthelsen

This paper summarises several summers field work within the southern Sukkertoppen district. Since detailed mapping has only been carried out within smaller areas within the region, the remainder being covered by reconnaissance mapping along the coasts, the results should be considered as preliminary. The southern Sukkertoppen district can be divided into three tectonic units, the Nordland, the Finnefjeld, and the Alángua complexes, which, most probably, were formed during the Ketilidian cycle (E. Wegmann, 1938). The metamorphic complexes are traversed by postorogenic dykes and faults (Berthelsen and Bridgwater, 1960). The dykes and faults were seemingly formed before the Nagssugtôqidian revolution which affected the country further to the north (Ramberg, 1948). The northern Nordland complex is shown to have passed through a metamorphic and structural evolution very similar to that which recently has been described from a small area within the complex (see table 2). An original granulite facies rock assemblage has been exposed to two successive imprints of retrograde metamorphism: first an amphibolite facies metamorphism; next a postorogenic epidote-amphibolite to greenschist facies metamorphism in connection with the formation of the younger faults. Evidence is brought forward that the tectonic phases established from Tovqussap nunâ may also be traced within the remaining parts of the Nordland complex. In one case (see fig. 3) an analysis of the basement structures reveals that the post-orogenic faulting is of the wrench fault type. The Finnefjeld complex which is built up of homogeneous hornblende-biotite-bearing quartz-dioritic gneisses is believed to have been originally composed of granulite facies rocks. Subsequent strong penetrative movements accompanied by low grade amphibolite facies metamorphism were responsible for the formation of the present Finnefjeld gneisses. This idea is strongly supported by the facts that relic patches of hypersthene gneiss and transgressive, but deformed, more or less uralitised diorite bodies occur within the Finnefjeld gneiss. The Alangua complex comprises abundant pelitic and semipelitic schists, amphibolites, ultrabasics and skarn rocks in addition to gneisses which are considered to be of metasomatic origin. The ultrabasic rocks have been described by H. Sørensen (1952,1953, 1954, and 1955). The rocks of this complex can also be shown to have passed through two periods of metamorphism (see also H. Sørensen, 1952); an original medium to high grade amphibolite facies metamorphism was succeeded by a later low grade amphibolite facies metamorphism accompanied by granitisation, pegmatisation etc., indicating the presence of a volatile-rich dispersed phase. Although not studied in detail, the structures of the Alángua complex are sufficiently well-known to establish the kinematic evolution of this complex. The first amphibolite facies metamorphism seems to correspond to the Smalledal-Pâkitsoq phases of the Nordland complex, while the subsequent period of low grade amphibolite metamorphism can be matched with the posthumous phase. During this latter, the northern part of the Nordland complex, which locally was thrust over the Alángua rocks (thereby causing their refolding) was converted into the present Finnefjeld gneisses. This interpretation explains the present differences between the three com· plexes as being due to Stockwerk tectonics, fig. 16. An alternative theory which holds that the Alángua rocks are younger than those of the southern complexes does not seem to concur with the field relation known so far. No mineral deposits of economic interest were found during the survey, but traces of sulfides (see tables 1 and 3), magnetite, molybdenite, corundum, monazite, zircon, talc and soapstone have been met with at various localities.


2021 ◽  
Author(s):  
Timothy Armitage ◽  
Robert Holdsworth ◽  
Robin Strachan ◽  
Thomas Zach ◽  
Diana Alvarez-Ruiz ◽  
...  

<p>Ductile shear zones are heterogeneous areas of strain localisation which often display variation in strain geometry and combinations of coaxial and non-coaxial deformation. One such heterogeneous shear zone is the c. 2 km thick Uyea Shear Zone (USZ) in northwest Mainland Shetland (UK), which separates variably deformed Neoarchaean orthogneisses in its footwall from Neoproterozoic metasediments in its hanging wall (Fig. a). The USZ is characterised by decimetre-scale layers of dip-slip thrusting and extension, strike-slip sinistral and dextral shear senses and interleaved ultramylonitic coaxially deformed horizons. Within the zones of transition between shear sense layers, mineral lineations swing from foliation down-dip to foliation-parallel in kinematically compatible, anticlockwise/clockwise-rotations on a local and regional scale (Fig. b). Rb-Sr dating of white mica grains via laser ablation indicates a c. 440-425 Ma Caledonian age for dip-slip and strike-slip layers and an 800 Ma Neoproterozoic age for coaxial layers. Quartz opening angles and microstructures suggest an upper-greenschist to lower-amphibolite facies temperature for deformation. We propose that a Neoproterozoic, coaxial event is overprinted by Caledonian sinistral transpression under upper greenschist/lower amphibolite facies conditions. Interleaved kinematics and mineral lineation swings are attributed to result from differential flow rates resulting in vertical and lateral extrusion and indicate regional-scale sinistral transpression during the Caledonian orogeny in NW Shetland. This study highlights the importance of linking geochronology to microstructures in a poly-deformed terrane and is a rare example of a highly heterogeneous shear zone in which both vertical and lateral extrusion occurred during transpression.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.0cf6ef44e5ff57820599061/sdaolpUECMynit/12UGE&app=m&a=0&c=d96bb6db75eed0739f2a6ee90c9ad8fd&ct=x&pn=gepj.elif&d=1" alt=""></p>


2021 ◽  
Author(s):  
Adam J. Cawood ◽  
David A. Ferrill ◽  
Alan P. Morris ◽  
David Norris ◽  
David McCallum ◽  
...  

<p>The Orphan Basin on the eastern edge of the Newfoundland continental margin formed as a Mesozoic rift basin prior to continental breakup associated with the opening of the North Atlantic. Few exploration wells exist in the basin, and until recently regional interpretations have been based on sparse seismic data coverage - because of this the structural evolution of the Orphan Basin has historically not been well understood. Key uncertainties include the timing and amount of rift-related extension, dominant extension directions, and the structural styles that accommodated progressive rift development in the basin.     </p><p>Interpretation of newly acquired modern broadband seismic data and structural restoration of three regional, WNW-ESE oriented cross-sections across the Orphan Basin and Flemish Cap provide new insights into rift evolution and structural style in the area. Our results show that major extension in the basin occurred between 167 Ma and 135 Ma, with most extension occurring prior to 151 Ma. We show that extension after 135 Ma largely occurred east of Flemish Cap due to a shift in the locus of rifting from the Orphan Basin to east of Flemish Cap. We find no evidence for discrete rifting events in the Orphan Basin, as has been suggested by other authors.  Kinematic restoration and associated heave measurements for the Orphan Basin show that extension was both widespread and relatively evenly distributed across the basin from Middle-Late Jurassic to Early Cretaceous.</p><p>We provide evidence for more widespread deposition of Jurassic strata throughout the Orphan Basin than previously interpreted, and show that Jurassic deposition was controlled by the occurrence and displacement of crustal-scale extensional detachment faults.  Structure in the three regional cross sections is dominated by large-scale, shallowly dipping extensional detachment faults. These faults mainly dip to the northwest and control the geometry and position of extensional basins – grabens and half-grabens – which occur at a range of scales. Stacked detachment surfaces, hyperextension, and attenuation of the crust are observed in central and eastern parts of the Orphan Basin. Zones of extreme crustal attenuation (to ca. 3.7 km) are interpreted to be coincident with large-displacement (up to 60 km) low-angle detachments. Results from crustal area balancing suggest that up to 41% of extension is not recognized through structural seismic interpretation, which we attribute to subseismic-scale ductile and brittle deformation, and uncertainties in the identification of detachment surfaces or complex structural configurations (e.g., overprinting of early extensional deformation).</p><p>Rifting style in the central, northern, and eastern parts of the Orphan Basin is dominated by low-angle detachment faulting with maximum extension perpendicular to the incipient rift axis. In contrast, structural geometries in the southwestern part of the basin are suggestive of transtensional deformation, and interplay of normal and strike-slip faulting.  Results from map-based interpretation show that strike-slip faults within this transtensional zone are associated with displacement transfer between half-grabens of opposing polarity, rather than regional strike-slip displacement.  These structures are interpreted as contemporaneous and kinematically linked to displacement along low-angle detachment surfaces elsewhere, and are not attributed to distinct episodes of oblique extension.       </p>


1994 ◽  
Vol 31 (8) ◽  
pp. 1287-1300 ◽  
Author(s):  
Simon Hanmer ◽  
Randy Parrish ◽  
Michael Williams ◽  
Chris Kopf

The geophysically defined Snowbird tectonic zone is manifested in northernmost Saskatchewan as a deep-crustal, multistage mylonitic structure, the East Athabasca mylonite triangle. The triangle, located at the northeastern apex of a stiff, crustal-scale "lozenge," is composed of mid-Archean annealed mylonites and late Archean ribbon mylonites, formed during two granulite facies events (850–1000 °C, 1.0 GPa). The flow pattern in the mylonites is geometrically and kinematically complex, and corresponds to that expected adjacent to the apex of a stiff elliptical volume subjected to subhorizontal regional extension parallel to its principal axis. The late Archean mylonites are divided into an upper structural deck, entirely occupied by a dip-slip shear zone, and an underlying lower deck. The latter is divided into two upright conjugate strike-slip shear zones, separated by a low-strain septum, which deformed by progressive coaxial flow. The flow pattern in the mid-Archean mylonites is compatible with that of the late Archean mylonites, and suggests that the crustal-scale lozenge influenced deformation since the mid-Archean. In the interval ca. 2.62–2.60 Ga, deformation in the upper and lower decks evolved from a granulite facies pervasive regime to a more localized amphibolite facies regime. With further cooling, deformation was localized within very narrow greenschist mylonitic faults at the lateral limits of the lower deck. By the late Archean, the East Athabasca mylonite triangle was part of a deep-crustal, intracontinental shear zone. This segment of the Snowbird tectonic zone was not the site of an Early Proterozoic suture or orogen.


2009 ◽  
Vol 180 (3) ◽  
pp. 231-246 ◽  
Author(s):  
Patrick Rolin ◽  
Didier Marquer ◽  
Michel Colchen ◽  
Charles Cartannaz ◽  
Alain Cocherie ◽  
...  

AbstractThe Variscan continental collision has led to the development of large strike-slip shear zones in western Europe. Our study focuses on the regional deformation and shear zone patterns in the Massif Armoricain and the French Massif Central. The synthesis of granite emplacement ages associated to granite deformation fields, allow us to propose a geodynamic model for the tectonic evolution of this part of the Variscan belt between 370 Ma – 320 Ma (Late Devonian – Namurian).After the first steps of the continental subduction-collision, leading to high temperature and anatexis associated with N-S shortening at 380-370 Ma (Frasnian to Famennian), the southern part of the Massif Armoricain and western part of French Massif Central underwent large dextral shearing along N100-N130 trending shear zones up to early Visean time. These large-scale displacements progressively decreased at around 350-340 Ma, during the first emplacements of biotite bearing granites (Moulins-les Aubiers-Gourgé massif and Guéret massif intrusions).During middle Visean times, the shortening axis direction rotated towards a NNE-SSW direction implying changes in the regional deformation field. The occurrence of N070-N100 sinistral and N110-N130 dextral conjugate shear zones within leucogranites are related to that time. Finally, new N150-N160 dextral shear zones appeared in middle to late Visean times: as for examples, the Parthenay and the Pradines shear zones in the SE Massif Armoricain and the Millevaches massif, respectively. These shear zones were conjugated to the sinistral N020 Sillon Houiller in the French Massif Central. They reflect large scale brittle continental indentation in the French Variscan belt during the middle to late Visean.


Sign in / Sign up

Export Citation Format

Share Document