Use of pyrite microfabric as a key to tectono-thermal evolution of massive sulphide deposits – an example from Deri, southern Rajasthan, India

1998 ◽  
Vol 62 (2) ◽  
pp. 197-212 ◽  
Author(s):  
Anju Tiwary ◽  
Mihir Deb ◽  
Nigel J. Cook

AbstractPyrite is an ubiquitous constituent of the Proterozoic massive sulphide deposit at Deri, in the South Delhi Fold Belt of southern Rajasthan. Preserved pyrite microfabrics in the Zn-Pb-Cu sulphide ores of Deri reveal a polyphase growth history of the iron sulphide and enable the tectono-thermal evolution of the deposit to be reconstructed.Primary sedimentary features in Deri pyrites are preserved as compositional banding. Regional metamorphism from mid-greenschist to low amphibolite facies is recorded by various microtextures of pyrite. Trails of fine grained pyrite inclusions within hornblende porphyroblasts define S1-schistosity. Pyrite boudins aligned parallel to S1 mark the brittle–ductile transformation of pyrite during the earliest deformation in the region. Isoclinal to tight folds (F1 and F2) in pyrite layers relate to a ductile deformation stage during progressive regional metamorphism. Peak metamorphic conditions around 550°C, an estimation supported by garnet–biotite thermometry, resulted in annealing of pyrite grains, while porphyroblastic growth of pyrite (up to 900 µm) took place along the retrogressive path. Brittle deformation of pyrite and growth of irregular pyritic mass around such fractured porphyroblasts characterize the waning phase of regional metamorphism. A subsequent phase of stress-free, thermal metamorphism is recorded in the decussate and rosette textures of arsenopyrite prisms replacing irregular pyritic mass. Annealing of such patchy pyrite provides information regarding the temperature conditions during this episode of thermal metamorphism which is consistent with the hornblendehornfels facies metamorphism interpreted from magnetite–ilmenite geothermometry (550°C) and sphalerite geobarometry (3.5 kbar). A mild cataclastic deformation during the penultimate phase produced microfaults in twinned arsenopyrite prisms.

1993 ◽  
Vol 57 (386) ◽  
pp. 83-91 ◽  
Author(s):  
Rowena C. Duckworth ◽  
David Rickard

AbstractSulphide mylonites are fine-grained massive sulphides which have deformed in a plastic manner. In the Renström Zn-Pb-Cu-Ag-Au VMS deposit, one of several operating mines in the Early Proterozoic Skellefte District in Northern Sweden, shear-zone metamorphism has resulted in the development of mylonitic fabrics within the sulphides. The massive sulphide ore is hosted in a shallow submarine to subaerial volcano-sedimentary sequence which has been variably metamorphosed and deformed. Initially, the sequence underwent burial metamorphism which was followed by an amphibolite grade regional metamorphic event at pressures of around 7.5 kbar and temperatures of 540-600°C This has been overprinted by a retrogressive metamorphic event at greenschist facies (at ca. 400°C with concomitant ductile deformation. Finally the area was uplifted to shallower crustal levels with associated cataclastic deformation.Both the regional and dynamic metamorphic events have resulted in the development of specific textures in the sulphide ores. Textural evidence indicates that pressure solution has been mainly responsible for the plastic deformation in pyrite, while the weaker sulphide minerals such as pyrrhotite, chalcopyrite and galena have generally recrystallised in response to the high strains.Sulphide mylonites are probably common rocks in many polydeformed massive sulphide deposits like Renström. They may have previously been misinterpreted as primary depositional textures.


1993 ◽  
Vol 130 (3) ◽  
pp. 379-390 ◽  
Author(s):  
R. M. Key ◽  
E. R. Phillips ◽  
B. C. Chacksfield

AbstractThe multiphase Strath Ossian Pluton was intruded into metasedimentary rocks of the Neoproterozoic Grampian and Appin groups (Grampian Highlands, Scotland) during Silurian or early Devonian times. Emplacementfollowed the main ductile tectono-thermal history of the area and took place during post-orogenic regional uplift and cooling. Early emplacement of dioritic magma in the northern part of the pluton resulted in migmatization of its immediate country rocks with the generation of new ductile structures. The main granodiorite was then emplaced with magma migrating towards the southeast where wall-rock stoping took place. Elsewhere the pluton created its own space with little stoping or veining. Thermal metamorphism caused by granodiorite emplacement resulted in the progressive development of the assemblage quartz+ plagioclase + biotite+ cordierite +andalusite ± K-feldspar in the metapelitic country rocks. Six prograde mineral assemblage zones are identified in the aureole. Final emplacement of a marginal porphyritic microgranite was accompanied by the release of alkaline fluids into the thermal aureole. This produced sillimanite (fibrolite) in association with hydrous phases such as chlorite and white mica. The development of andalusite and cordierite-bearing assemblages is estimated to have occurred at temperatures of 650±50 °C at an estimated pressure of 3.2±0.5 kbars. An approximately isobaric temperature change of 300±50 °C across the width of the main aureole is deduced. The migmatization close to the plutons margins took place at temperatures of about 700 °C. An estimated depth of emplacement of about 11 km is obtained for the Strath Ossian Pluton. This implies considerable regional uplift both prior to, andimmediately after its emplacement. Thus it has been estimated that at the peak of regional metamorphism, probably during the Ordovician Period, the country rocks were at a depth of 15 to 18.5 km, whereas the early Devonian dykes of the Etive dyke swarm, which cut the Strath Ossian Pluton, were emplaced at, or near surface.


1999 ◽  
Vol 36 (4) ◽  
pp. 605-625 ◽  
Author(s):  
Virginia L Peterson ◽  
Eva Zaleski

Structural analysis of the Manitouwadge greenstone belt, integrated with detailed mapping and geochronological and petrographic studies, reveals a complex early deformation history that significantly modified the primary distribution of base-metal deposits and alteration zones. The (D3) Manitouwadge synform dominates the map pattern; however, penetrative fabric development and establishment of the tectono-stratigraphy of base-metal deposits mostly predated D3. The D1 Garnet Lake fault, which repeats mineralized horizons within a distinctive lithological sequence, is delineated locally by annealed mylonite. D1 planar fabrics are preserved locally in outcrop and thin section. D2 folding accompanied peak regional metamorphism at upper amphibolite facies. The F2 Agam Lake syncline repeats the volcanic sequence across the southern limb of the Manitouwadge synform. A map-scale F2 sheath fold deforms the Garnet Lake fault. Minor D2 structures include prevalent outcrop-scale folds, locally with sheath geometry, the dominant S2 foliation, and mineral lineations (parallel to fold axes). Northwest-southeast-directed D3 shortening produced the Manitouwadge synform and related regional folds without extensive penetrative fabric development. Flexural slip folding is evident in the inner hinge of the synform where rocks of differing competency are interlayered. Higher strain, stronger fabric development, and a component of simple shear were preferentially partitioned to fold limbs. Relative pre-D3 structural geometries in the inner hinge region of the Manitouwadge synform are not significantly complicated by D3 and younger deformation. Retrodeformation of the mineralized sequence shows systematic stratigraphic patterns in iron formation types, stacked massive sulphide orebodies, and alteration types that can be applied to exploration models.


1996 ◽  
Vol 33 (2) ◽  
pp. 284-302 ◽  
Author(s):  
David R. Lentz ◽  
Wayne D. Goodfellow

Intensely silicified volcaniclastic mudstones that underlie the Brunswick No. 12 massive sulphide deposit in northern New Brunswick resemble silicified rocks described in the immediate footwall of many ancient and modern massive sulphide deposits. The white to grey, cryptocrystalline silica in the silicified rocks becomes more common with proximity to the vent, and is most abundant immediately below the massive sulphide zone. Mass-balance analysis of altered footwall sedimentary rocks on the 850 m level of the mine shows that SiO2 increases up to 300%. The high silica enrichment in the feeder zone is consistent with the presence of cherty silica in the massive sulphides and in associated exhalative iron formation. Coincident with silicification are enrichments in S, FeOt, MgO, MnO, CaO, P2O5, F, Cl, Y, Cu, Co, Cr, and Ni, as well as light rare earth elements and Eu. Oxygen isotope analyses of chloritized and silicified footwall sedimentary rocks suggest that the hydrothermal fluid had a δ18O composition of approximately 4[Formula: see text] and probably was dominated by chemically modified sea water. Rapid oversaturation of the silica-bearing fluid likely explains the intensity and fine-grained nature of this silicification, although the actual mechanism for this oversaturation is uncertain.


2020 ◽  
Vol 123 (3) ◽  
pp. 263-276
Author(s):  
A. Hofmann ◽  
H. Xie ◽  
L. Saha ◽  
C. Reinke

Abstract A Palaeoarchaean greenstone fragment and associated granitoid gneisses from an area south of Ulundi in KwaZulu-Natal is described. The fragment consists of an association of garnetiferous amphibolite and calc-silicate that was intruded at 3388 ± 4 Ma by tonalite and at 3275 ± 4 Ma by trondhjemite. Strong ductile deformation of the greenstones and granitoids under amphibolite facies conditions (7 kbar and 600 to 650°C) took place prior to uplift and emplacement of a granite batholith at ~3.25 Ga ago in which the granitoid gneiss-greenstone domain is now found. Magmatism 3.27 to 3.25 Ga ago was a direct response to regional metamorphism and anataxis, and gave rise to stabilization of the southeastern Kaapvaal Craton at that time, earlier than other parts of the craton. Deposition of quartz-arenites on stable granitic basement took place <3.1 Ga ago. Contrasting ages in magmatic pulses and regional metamorphism reflect a different crustal growth history of the eastern and southeastern part of the Kaapvaal Craton.


2020 ◽  
Vol 57 (1) ◽  
pp. 133-166
Author(s):  
Marie-Ève Lajoie ◽  
Stephen J. Piercey ◽  
James Conliffe ◽  
Daniel Layton-Matthews

Barite in the approximately 513 Ma Lemarchant volcanogenic massive sulphide (VMS) deposit, Newfoundland, consists of granular and bladed barite intimately associated with mineralization. Regardless of type, the composition of barite is homogeneous at bulk rock and mineral scale containing predominantly Ba, S, and Sr, with minor Ca and Na. The barite has homogeneous sulphur isotope compositions (δ34Smean = 27‰), similar to Cambrian seawater sulphate (25–35‰) and Sr isotope compositions (87Sr/86Sr = 0.706905 to 0.707485). These results are consistent with barite having formed from fluid–fluid mixing between Cambrian seawater and VMS-related hydrothermal fluids. The 87Sr/86Sr values in the barite are lower than mid-Cambrian seawater, which suggests that some of the Sr was derived from the underlying Neoproterozoic basement. Fluid inclusions in bladed barite are low-salinity, CO2-rich inclusions with homogenization temperatures between 245°–250 °C, and average salinity of 1.2 wt.% NaCl equivalent. Estimated minimum trapping pressures of between 1.7 to 2.0 kbars were calculated from aqueous–carbonic fluid inclusion assemblages. The fluid inclusion results reflect regional metamorphic reequilibration during younger Silurian regional metamorphism, rather than primary fluid signatures, despite the preservation of primary barite and fluid inclusion textures. These results illustrate that barite in VMS deposits records the physicochemical processes associated with VMS formation and the sources of fluids in ancient VMS deposits, as well as seawater sulphate and basement isotopic compositions. The results herein are not only relevant for the Lemarchant deposit but also for other barite-rich VMS deposits globally.


1952 ◽  
Vol 89 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Germaine A. Joplin

AbstractIn an attempt to dissect the granitization process in an area of regional metamorphism, it is suggested that granite is forcibly injected during strong compression, that the compressional wave passes upwards and outwards in advance of the magma, and that several changes take place before its arrival. Six stages in this process are recognized in the Cooma and Albury districts of N.S.W.: (1) Regional Metamorphism, (2) Superimposed Thermal Metamorphism, (3) Permeation without Magmatic Addition, (4) Addition from an Attenuated Magma, (5) Formation of a Potassic Wave-Front, and (6) Injection of the Magma as Concordant Intrusions. The conditions favouring granitization are discussed and the question of basic fronts is considered.


Sign in / Sign up

Export Citation Format

Share Document