2000 years of marine primary productivity in the Eastern Tropical North Pacific

Author(s):  
Christina Treinen-Crespo ◽  
Jose Carriquiry ◽  
Julio Villaescusa ◽  
Elisabet Repiso-Terrones

<p>Changes in marine primary productivity (MPP) over the 21st century are expected to occur under the prevailing climate change scenario. For better understanding of past climate variability, we reconstructed MPP at high resolution (~1-2 years) for the past 2000 years analyzing biogenic silica and total organic carbon (TOC %) on a sediment core collected from Soledad Basin (25°N, 112°W), Baja  California, Mexico. Located in the Eastern Tropical North Pacific, this suboxic basin is ideal for palaeoceanographic reconstructions due to its high sedimentation rate (2 mm/year), which allow us to reconstruct past changes in the ocean and climate at high resolution. Our results show an increasing trend in the variability of MPP for the past 2000 years: biogenic silica content does not show a well-defined trend, but rather it is dominated by strong multidecadal and prominent centennial-scale cycles while TOC (%) shows a slight increasing trend towards the present, starting at least 2000 years ago. Spectral analysis confirms the presence of multidecadal to centennial cycles. These results will be discussed in the context of the Anthropocene and natural climate variability.</p>

The Holocene ◽  
2015 ◽  
Vol 25 (6) ◽  
pp. 892-899 ◽  
Author(s):  
Xiumei Li ◽  
Jie Liang ◽  
Juzhi Hou ◽  
Wenjing Zhang

2015 ◽  
Vol 36 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Marie Méheust ◽  
Ruediger Stein ◽  
Kirsten Fahl ◽  
Lars Max ◽  
Jan-Rainer Riethdorf

2014 ◽  
Vol 10 (2) ◽  
pp. 1223-1264 ◽  
Author(s):  
G. Auer ◽  
W. E. Piller ◽  
M. Harzhauser

Abstract. Within a 5.5 m-thick succession of Upper Burdigalian (Karpatian) sediments in the North Alpine Foreland Basin (NAFB; Austria), dated to CNP-zone NN4, a high-resolution section was logged continuously. 100 samples were taken with a resolution of ~10 mm per layer and analysed using an integrated multi-proxy approach. Earlier analyses of geochemistry and calcareous nannoplankton assemblages hint at small-scale, short-term variations in palaeoenvironmental conditions, such as water-column stratification, primary productivity, organic matter flux, bottom-water oxygenation, freshwater influx and changes in relative sea-level. The results indicate a highly dynamic shallow marine setting that was subject to high frequency environmental changes on a decadal to centennial scale. Time-series analyses on nine different proxy-datasets using REDFIT-analysis and Wavelet spectra were applied to resolve a possible cyclic nature of these variations. Analyses revealed that different proxies for precipitation, upwelling intensity, and over all productivity likely were controlled by different cyclicities. A best-fit adjustment of the likely sedimentation rates within the high-resolution section resulted in periodicities fitting well with the Lower (~65 yr) and Upper (~113 yr) Gleissberg cycle as well as the Suess/de Vries cycle (~211 yr). The section covers a timespan of ~1190 yr based on the correlation with solar cycles, which resulted in an estimated sedimentation rate of 575 mm kyr−1. For the first time, short-term climate variability on a decadal to centennial scale is resolved in Lower Miocene shallow marine laminated sediments in a land-based section. The results hint at a close relationship between climate variability and solar forcing during the Late Burdigalian. Moreover, accepting that these cyclicities are indeed of solar origin, this would indicate that precipitation was driven by the two Gleissberg cycles, while upwelling was driven by the Suess cycle. Furthermore, proxies for primary productivity were influenced by both cycles, although the Suess cycle exerts dominant control, reflecting a stronger influence of upwelling on primary productivity.


2015 ◽  
Vol 11 (2) ◽  
pp. 283-303 ◽  
Author(s):  
G. Auer ◽  
W. E. Piller ◽  
M. Harzhauser

Abstract. Within a 5.5 m thick succession of Upper Burdigalian (Karpatian) sediments in the North Alpine Foreland Basin (NAFB; Austria), dated to CNP-zone NN4, a high-resolution section was logged continuously. One hundred samples were taken with a resolution of ~10 mm (approximating ~17 years) per layer and analyzed using an integrated multi-proxy approach. Earlier analyses of geochemistry and calcareous nannoplankton assemblages hint at small-scale, short-term variations in paleoenvironmental conditions, such as water-column stratification, primary productivity, organic matter flux, bottom-water oxygenation, freshwater influx, and changes in relative sea level. The results indicate a highly dynamic shallow marine setting that was subject to high-frequency environmental changes on a decadal to centennial scale. Time-series analyses on nine different proxy data sets using REDFIT analysis and wavelet spectra were applied to resolve a possible cyclic nature of these variations. Analyses revealed that different proxies for precipitation, upwelling intensity, and overall productivity were likely controlled by different cyclicities. A best-fit adjustment of the likely sedimentation rates within the high-resolution section resulted in periodicities fitting well with the Lower (~65 years) and Upper (~113 years) Gleissberg cycle as well as the Suess/de Vries cycle (~211 years). The section covers a time span of ~1190 years based on the correlation with solar cycles, which resulted in an estimated sedimentation rate of 575 mm kyr−1. For the first time, short-term climate variability on a decadal to centennial scale is resolved in Lower Miocene shallow marine laminated sediments in a land-based section. The results hint at a close relationship between climate variability and solar forcing during the Late Burdigalian. Moreover, accepting that these cyclicities are indeed of solar origin, this would indicate that precipitation was driven by the two Gleissberg cycles, while upwelling was driven by the Suess cycle. Furthermore, proxies for primary productivity were influenced by both cycles, although the Suess cycle exerts dominant control, reflecting a stronger influence of upwelling on primary productivity.


2017 ◽  
Vol 13 (4) ◽  
pp. 411-420 ◽  
Author(s):  
François Lapointe ◽  
Pierre Francus ◽  
Scott F. Lamoureux ◽  
Mathias Vuille ◽  
Jean-Philippe Jenny ◽  
...  

Abstract. Understanding how internal climate variability influences arctic regions is required to better forecast future global climate variations. This paper investigates an annually-laminated (varved) record from the western Canadian Arctic and finds that the varves are negatively correlated with both the instrumental Pacific Decadal Oscillation (PDO) during the past century and also with reconstructed PDO over the past 700 years, suggesting drier Arctic conditions during high-PDO phases, and vice versa. These results are in agreement with known regional teleconnections, whereby the PDO is negatively and positively correlated with summer precipitation and mean sea level pressure respectively. This pattern is also evident during the positive phase of the North Pacific Index (NPI) in autumn. Reduced sea-ice cover during summer–autumn is observed in the region during PDO− (NPI+) and is associated with low-level southerly winds that originate from the northernmost Pacific across the Bering Strait and can reach as far as the western Canadian Arctic. These climate anomalies are associated with the PDO− (NPI+) phase and are key factors in enhancing evaporation and subsequent precipitation in this region of the Arctic. Collectively, the sedimentary evidence suggests that North Pacific climate variability has been a persistent regulator of the regional climate in the western Canadian Arctic. Since projected sea-ice loss will contribute to enhanced future warming in the Arctic, future negative phases of the PDO (or NPI+) will likely act to amplify this positive feedback.


Nature ◽  
1995 ◽  
Vol 377 (6547) ◽  
pp. 323-326 ◽  
Author(s):  
A. T. Kotilainen ◽  
N. J. Shackleton

Sign in / Sign up

Export Citation Format

Share Document